${ }^{19} \mathbf{F}\left({ }^{8} \mathrm{He},{ }^{20} \mathrm{Ne}\right) \quad$ 2022Ca10

$\frac{\text { Type }}{\text { Full Evaluation }} \frac{\text { Author }}{\text { History }} \quad$| C. Setoodehnia, J. H. Kelley, J. E. Purcell |
| :--- |

(2020CaZW, 2022Ca10): XUNDL dataset compiled by TUNL, 2023: The authors describe the ${ }^{7} \mathrm{H}$ nucleus as an extended pure neutron shell around a ${ }^{3} \mathrm{H}$ core in a $1 / 2^{+}$ground state. The neutron pairing makes the ${ }^{7} \mathrm{H}$ nucleus a long-lived and almost-bound resonance.
In this experiment, more than 200 events were assigned to ${ }^{7} \mathrm{Hg}$..s. (from the ${ }^{19} \mathrm{~F}\left({ }^{8} \mathrm{He},{ }^{20} \mathrm{Ne}\right)$ and ${ }^{12} \mathrm{C}\left({ }^{8} \mathrm{He},{ }^{13} \mathrm{~N}\right)$ reactions measured), which is significantly higher than any other measurement. The missing mass spectrum shows a prominent peak corresponding to the resonant formation of ${ }^{7} \mathrm{H}$ with the ${ }^{19} \mathrm{~F}$ target with a small contribution from the lower tail of a 3-body non-resonant continuum, as well as a less obvious peak corresponding to the ${ }^{12} \mathrm{C}$ contribution to the production of ${ }^{7} \mathrm{H}$. The authors deduced the spectrum of ranges (with 16 mm resolution at FWHM) for those recoils whose emission angles were between $\theta=45^{\circ}-54^{\circ}$ in the laboratory frame. This distribution shows two clear peaks (from ${ }^{19} \mathrm{~F}$ and ${ }^{12} \mathrm{C}$ contributions) and was simulated with a Breit-Wigner probability distribution. The mass and width of the ${ }^{7} \mathrm{H}$ resonance were extracted from a log-likelihood minimization between the simulation and the measured range distribution. The result describes ${ }^{7} \mathrm{H}$ as a low-lying, narrow (due to neutron pairing) resonance with a mass of $0.73 \mathrm{MeV}+58-47$ above the ${ }^{3} \mathrm{H}+4 \mathrm{n}$ mass and a width of $0.18 \mathrm{MeV}+47-16$. Owing to the large number of detected ${ }^{7} \mathrm{H}$ events, most of which came from the reactions with the ${ }^{19} \mathrm{~F}$ target, the angular distribution of the ${ }^{7} \mathrm{H}$ production with the ${ }^{19} \mathrm{~F}$ target was measured. The average production cross-section with ${ }^{19} \mathrm{~F}$ is $2.7 \mathrm{mb} / \mathrm{sr} 5$ between $\theta_{\text {c.m. }}=4^{\circ}-18^{\circ}$. DWBA calculations were performed with the code FRESCO. The data obtained with the ${ }^{19} \mathrm{~F}$ target are best fitted assuming the 0^{+}ground state of ${ }^{20} \mathrm{Ne}$ and a $1 / 2^{+}{ }^{7} \mathrm{H}$ resonance. The scaling factor deduced from normalizing the DWBA differential cross sections to the experimental ones was observed to vary between 4.528 and 12.761 , depending on the nuclear density used for ${ }^{8} \mathrm{He}$.
${ }^{7}$ H Levels
$\frac{\mathrm{E}(\text { level })}{0} \frac{\mathrm{~J}^{\pi \dagger}}{1 / 2^{+}} \frac{\Gamma(\mathrm{MeV})}{0.18 \mathrm{MeV}+47-16} \quad \frac{\mathrm{~L}^{\dagger}}{0} \xlongequal{\mathrm{E}_{\text {res }}\left({ }^{3} \mathrm{H}+4 \mathrm{n}\right)=0.73 \mathrm{MeV}+58-47 \text { from (2022Ca10). }}$
$\mathrm{E}($ level): The missing mass spectrum displayed on Fig. 3 of (2022Ca10) shows two wide peaks corresponding to the production of ${ }^{7} \mathrm{H}$ from the $\left({ }^{8} \mathrm{He},{ }^{3} \mathrm{He}\right)$ reactions on the ${ }^{19} \mathrm{~F}$ and ${ }^{12} \mathrm{C}$ targets. These peaks are respectively $\sim 5 \mathrm{MeV}$ and several MeV wide at FWHM and are attributed to the contributions from ${ }^{19} \mathrm{~F}$ and ${ }^{12} \mathrm{C}$, respectively. Such a wide range may already include at least the first excited state of ${ }^{7} \mathrm{H}$, which is not considered in (2022Ca10). It is unclear how $(2022 \mathrm{Ca} 10)$ extracted the energy and width of the ${ }^{7} \mathrm{H}_{\text {g.s. }}$ from the detector response function, and why they did not include any potential excited states. $\mathrm{d} \sigma / \mathrm{d} \Omega=2.7 \mu \mathrm{~b} / \mathrm{sr} 5$ between $\theta_{\text {c.m. }}=4^{\circ}-18^{\circ}$ from (2022Ca10).
The spectroscopic factor deduced from normalizing the DWBA cross section to the experimental angular distribution of the ${ }^{19} \mathrm{~F}\left({ }^{8} \mathrm{He},{ }^{20} \mathrm{Ne}\right){ }^{7} \mathrm{H}$ reaction was observed (2022Ca10) to vary between 4.528 and 12.761 , depending on the nuclear density used for ${ }^{8} \mathrm{He}$ in the DWBA calculation.
${ }^{\dagger}$ From L=0 in a DWBA fit to the measured angular distribution of the ${ }^{19} \mathrm{~F}\left({ }^{8} \mathrm{He},{ }^{20} \mathrm{Ne}\right){ }^{7} \mathrm{H}$ transfer reaction data from (2022Ca10). The $\mathrm{L}=0$ is inferred since the best fit for the DWBA calculation assumes that ${ }^{20} \mathrm{Ne}$ is in its ground state, and that the proton is removed from the ground state of ${ }^{8} \mathrm{He}$ (2022Ca10).

