¹⁹F(⁸He,²⁰Ne) **2022Ca10**

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	K. Setoodehnia, J. H. Kelley, J. E. Purcell	ENSDF	28-September-2023				

(2020CaZW, 2022Ca10): XUNDL dataset compiled by TUNL, 2023: The authors describe the ⁷H nucleus as an extended pure neutron shell around a ³H core in a 1/2⁺ ground state. The neutron pairing makes the ⁷H nucleus a long-lived and almost-bound resonance.

In this experiment, more than 200 events were assigned to ⁷H_{g.s.} (from the ¹⁹F(⁸He, ²⁰Ne) and ¹²C(⁸He, ¹³N) reactions measured), which is significantly higher than any other measurement. The missing mass spectrum shows a prominent peak corresponding to the resonant formation of ⁷H with the ¹⁹F target with a small contribution from the lower tail of a 3-body non-resonant continuum, as well as a less obvious peak corresponding to the ¹²C contribution to the production of ⁷H. The authors deduced the spectrum of ranges (with 16 mm resolution at FWHM) for those recoils whose emission angles were between θ =45°-54° in the laboratory frame. This distribution shows two clear peaks (from ¹⁹F and ¹²C contributions) and was simulated with a Breit-Wigner probability distribution. The mass and width of the ⁷H resonance were extracted from a log-likelihood minimization between the simulation and the measured range distribution. The result describes ⁷H as a low-lying, narrow (due to neutron pairing) resonance with a mass of 0.73 MeV +58-47 above the ³H+4n mass and a width of 0.18 MeV +47-16. Owing to the large number of detected ⁷H events, most of which came from the reactions with the ¹⁹F target, the angular distribution of the ⁷H production with the ¹⁹F target was measured. The average production cross-section with ¹⁹F is 2.7 mb/sr 5 between $\theta_{c.m.}$ =4°-18°. DWBA calculations were performed with the code FRESCO. The data obtained with the ¹⁹F target are best fitted assuming the 0⁺ ground state of ²⁰Ne and a 1/2⁺ ⁷H resonance. The scaling factor deduced from normalizing the DWBA differential cross sections to the experimental ones was observed to vary between 4.5 28 and 12.7 *61*, depending on the nuclear density used for ⁸He.

⁷H Levels

E(level)	$J^{\pi \dagger}$	Γ (MeV)	L‡	Comments
0	1/2+	0.18 MeV +47-16	0	E _{res} (³ H+4n)=0.73 MeV +58–47 from (2022Ca10). E(level): The missing mass spectrum displayed on Fig. 3 of (2022Ca10) shows two wide peaks corresponding to the production of ⁷ H from the (⁸ He, ³ He) reactions on the ¹⁹ F and ¹² C targets. These peaks are respectively ~5 MeV and several MeV wide at FWHM and are attributed to the contributions from ¹⁹ F and ¹² C, respectively. Such a wide range may already include at least the first excited state of ⁷ H, which is not considered in (2022Ca10). It is unclear how (2022Ca10) extracted the energy and width of the ⁷ H _{g.s.} from the detector response function, and why they did not include any potential excited states. $d\sigma/d\Omega=2.7 \ \mu$ b/sr 5 between $\theta_{c.m.}=4^{\circ}-18^{\circ}$ from (2022Ca10). The spectroscopic factor deduced from normalizing the DWBA cross section to the experimental angular distribution of the ¹⁹ F(⁸ He, ²⁰ Ne) ⁷ H reaction was observed (2022Ca10) to vary between 4.5 28 and 12.7 <i>61</i> , depending on the nuclear density used for ⁸ He in the DWBA calculation.

[†] From L=0 in a DWBA fit to the measured angular distribution of the ¹⁹F(⁸He,²⁰Ne)⁷H transfer reaction data from (2022Ca10). The L=0 is inferred since the best fit for the DWBA calculation assumes that ²⁰Ne is in its ground state, and that the proton is removed from the ground state of ⁸He (2022Ca10).

1