¹²C(⁸He,¹³N) 2008Ca22,2022Ca10

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	K. Setoodehnia, J. H. Kelley, J. E. Purcell	ENSDF	28-September-2023

2007Ca28, 2007Ca47, 2007CaZZ, 2008Ca22: The ${}^{12}C({}^{8}\text{He}, {}^{13}\text{N})^{7}\text{H}$ proton transfer reaction is studied by impinging an $E({}^{8}\text{He})=15.4 \text{ MeV/nucleon beam, produced at the SPIRAL facility in GANIL, on a C₄H₁₀ gas target. The <math>{}^{13}\text{N}$ and tritium (from ${}^{7}\text{H}$ decay) charged reaction products are detected in coincidence mode. Seven events are associated with ${}^{7}\text{H}$. The energy of the ground state ${}^{7}\text{H}$ resonance is determined to be $E_{res}=0.57 \text{ MeV} + 42-21$ above the ${}^{3}\text{H}+4n$ breakup threshold with a width of $\Gamma=0.09 \text{ MeV} + 94-6$. The uncertainties in E_{res} and Γ are large because of the small number of observed events. These experiments do not report on the ${}^{7}\text{H}$ spin and parity, and no reaction channel identification was possible. (2021Mu04) mentions that the results of these experiments are based on the assumption that only ${}^{7}\text{H}_{g.s.}$ was populated. This assumption however may be questionable because of the potential for the populations of ${}^{7}\text{H}*$, as well as ${}^{12}\text{C}({}^{8}\text{He}, {}^{14}\text{N}){}^{6}\text{H}$, and ${}^{12}\text{C}({}^{8}\text{He}, {}^{15}\text{N}){}^{5}\text{H}$, which would complicate the

detection of ⁷H_{g.s.} in the absence of the reaction channel identification.

- (2022Ca10): XUNDL dataset compiled by TUNL, 2023: The authors used the ¹⁹F(⁸He, ²⁰Ne) and ¹²C(⁸He, ¹³N) reactions to investigate the ground state properties of ⁷H.
- A beam of ⁸He ions with an intensity of 10⁴ pps and an energy of 15.4 MeV/nucleon was produced in the SPIRAL facility at GANIL. The beam impinged on the MAYA active-target detector filled with 176 mbar of a mixture of helium and CF₄. The trajectories of the ²⁰Ne and ¹³N recoils were measured with an angular resolution of 1.2°. The tritons from the decay of ⁷H were detected, in coincidence with the recoils, in a Δ E-E telescope composed of 20 silicon detectors backed by 80 CsI crystals.
- In comparison with the ¹⁹F(⁸He,²⁰Ne) events, the missing mass spectrum shows a less obvious peak associated to the contribution of the ¹²C to the resonant formation of ⁷H. This peak is in a region with a significant contribution from the lower tail of the non-resonant continuum. An upper limit of 0.2 mb/sr was estimated for the contributions other than those of the ⁷H and its non-resonance continuum. The authors deduced the spectrum of ranges (16 mm resolution at FWHM) for those recoils whose emission angles were between $\theta_{lab}=45^{\circ}-54^{\circ}$. This distribution shows a clear peak corresponding to the contribution of ¹²C to the formation of ⁷H. The peak was simulated with a Breit-Wigner probability distribution. The mass and width of the ⁷H resonance were extracted from a log-likelihood minimization between the simulation and the measured range distribution. The angular distribution of the ⁷H production with the ¹²C target was measured. DWBA calculations were performed with the code FRESCO. The average production cross section with the ¹²C yields 1.2 mb/sr +5-6 between $\theta_{c.m.}=6^{\circ}$ and 27°. Systematic uncertainties are estimated to be ~0.7%. The measured angular distributions is rather featureless, and the DWBA fits suffered from large statistical and systematic uncertainties, which prevented a clear assignment of spin and parity.

E(level)	Γ (MeV)	Comments
0	0.18 MeV +41-12	E(level): The resonance is at 0.64 MeV +33–23 above the ³ H+4n threshold. $E_{res}(^{3}H+4n)=0.64$ MeV +33–23: the weighted average of 0.73 MeV +58–47 from (2022Ca10) and 0.57 MeV +42–21 from (2007Ca28, 2007Ca47, 2007CaZZ, 2008Ca22). Γ (MeV): The weighted average of 0.18 MeV +47–16 from (2022Ca10) and 0.09 MeV +94–6 from (2007Ca28, 2007Ca47, 2007CaZZ, 2008Ca22). $d\sigma/d\Omega=40 \ \mu b/sr +58-31$ from (2007Ca28, 2007Ca47, 2007CaZZ, 2008Ca22), and $d\sigma/d\Omega=1.2 \ \mu b/sr +5-6$ between $\theta_{c.m.}=6^{\circ}-27^{\circ}$ with a systematic uncertainty of 0.7% from (2022Ca10).