Adopted Levels

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	J. Kelley, C. G. Sheu	ENSDF	01-June-2014				

 $S(n)=27.7\times10^3 \ 20; \ S(p)=-2013 \ 25; \ Q(\alpha)=-3.4\times10^3 \ 20 \ 2012Wa38$

Evidence of the unbound ⁷B nucleus is observed in three measurements. Each of these measurements is complicated by backgrounds, which affect the extraction of ground state properties. Since ⁷B is unbound to 1p, 2p and 3p emission, the ⁷Li(π^+,π^-) measurements of (1981SeZR) are complicated by multi-body breakups that add a phase-space background component to their analyzed spectra. The ¹⁰B(³He,⁶He) measurements of (1967Mc14) were complicated by a rather large ¹¹B(³He,⁶He) background of ⁸B states along with a multi-body breakup phase-space background component. Finally, the kinematically complete ⁷B analysis of ⁹Be(⁹C,⁷B) reactions of (2011Ch32) are "contaminated" by ⁹Be(⁹C,⁸C) events where one proton is unobserved.

The corrections applied in 2012Ch32 appear to be the smallest, and arguably most reliable, which perhaps explains that the 2012Wa38 mass evaluation has based the ⁷B mass excess on this value alone. Without further experimental information, it is agreed that this is the best decision.

Mass predictions and comparison with T=3/2 isobaric analog states are found in (1965De08, 1988Co15, 1997Po12, 2011Ch53). See (1974Ir04, 1993Po11, 1997Ba54, 1998Na17, 2001Co21, 2006Wi07, 2007Ma79) for broad analyses of ⁷B and other p-shell nuclei, and see (2006Ca35, 2007Do01, 2007Ca31, 2011My03, 2012My04) for more specific analysis on ⁷B and nearby nuclides.

The connection between wave-function diffuseness and proton decay is analyzed in 1997Ab27.

⁷B Levels

Cross Reference (XREF) Flags

$^{7}\text{Li}(\pi^{+},\pi^{-})$	
${}^{9}\text{Be}({}^{9}\text{C},{}^{7}\text{B})$	

A R

				$C = {}^{10}B({}^{3}He, {}^{6}He)$	
E(level)	\mathbf{J}^{π}	T _{1/2}	XREF		Comments
0	(3/2 ⁻)	801 keV 20	ABC	%p≈100 T=(3/2) J ^{π} : From systematics.	

All decay paths emit protons. The intensity for decay to $p+{}^{6}Be_{g.s.}$ is $(81 \pm 10)\%$. Proton decay to ${}^{6}Be*(1.6 \text{ MeV})$ is suppressed. Decay to $2p+{}^{5}Li$ and $3p+{}^{4}He$ are other open channels.