⁹Be(⁹C, ⁷B) **2011Ch32**

History

Type Author Citation Literature Cutoff Date
Full Evaluation J. Kelley, C. G. Sheu ENSDF 01-June-2014

The authors impinged a 70 MeV/A ⁹C beam on a thick ⁹Be target and detected ejected reaction products with a large area position sensitive ΔE-E array. Reconstruction of the complete kinematics permitted an analysis of excitation energies, decay pathways and associated branching ratios for several nuclei.

A beam of 150 MeV/nucleon ¹⁶O ions was fragmented in a thick ⁹Be target to produce a 70 MeV/nucleon ⁹C beam in the NSCL A1900 fragment separator. The ⁹C beam impinged on a 1mm thick ⁹Be target and reaction products were detected in 14 position sensitive ΔΕ-Ε elements of the HiRA array. The coincident reaction products were analyzed via kinematic energy reconstruction to evaluate excitation energies and decay paths.

The $^7B_{g.s.}$ is observed in the $3p+\alpha$ decay spectrum, which is significantly contaminated by 8C events $(4p+\alpha)$ where one proton is not detected. The 7B excitation energy spectrum is "corrected" for 8C events and a broad background is also considered.

⁷B Levels

E(level) J^{π} Γ Comments 0 $(3/2^{-})$ 801 keV 20 T=(3/2)

 J^{π} : From Adopted Levels. A kinematic reconstruction of α +3p events indicates a state at mass excess=27677 keV 25,

A kinematic reconstruction of α +3p events indicates a state at mass excess=27677 keV 25, which is ≈ 250 keV lower than the accepted value for $^{7}B_{g.s.}$ (27.94 MeV 10). A width of Γ =800 keV 20 was deduced, which compares with 1.4 MeV 2 from 1967Mc14.

The decay path was evaluated to determine the fraction of ${}^7B_{g.s.} -> p + {}^6Be_{g.s.}$ decay events. Initial analysis indicated a $(54 \pm 6)\%$ probability for $p + {}^6Be_{g.s.}$ events in the data, though after correction for a broad background component a final ratio of ${}^7Be_{g.s.} -> (81 \pm 10)\%$ $p + {}^6Be_{g.s.}$ is deduced. This appears consistent with a shell model spectroscopic factor prediction S = 0.688.

Discussion on the p+ 6 Be*(1.67 MeV; J^{π} =2+) decay branch is given. The p+ 6 Be(2+) configuration is expected to be 3 times larger than the p+ 6 Be_{g.s.}(0+) configuration in 7 B_{g.s.}; however the p+ 6 Be(2+) channel is suppressed due to a smaller barrier penetration factor.