

U(p,F) 2019Xi07,2017Wr01

Type	Author	History	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja	NDS 207,1 (2026)	1-Apr-2023

2019Xi07: ^{69}Zn was produced by bombarding UC_x target with 1.4 GeV proton beam at the CERN-ISOLDE facility. Zn isotopes were selectively ionized by the RILIS laser ion source, accelerated to 30 keV, mass separated with the high-resolution mass separator, and injected into the COLLAPS setup. Measured hyperfine spectra and deduced changes in mean square charge radii relative to ^{68}Zn . Systematic uncertainty are mainly from uncertainty on atomic and field-shift factors. Comparisons were done with Monte Carlo Shell Model (MCSM) calculations.

2017Wr01: ^{69}Zn was produced by bombarding UC_x target with 1.4 GeV proton beam at the CERN-ISOLDE facility. Zn isotopes were selectively ionized by the RILIS laser ion source, accelerated to 30 keV, mass separated with the high-resolution mass separator, and injected into the COLLAPS setup. Measured hyperfine spectra using collinear laser spectroscopy using COLLAPS setup at ISOLDE-CERN. Deduced spins, μ , Q, isomer. Comparison with large-scale shell model calculations.

For the calibration of nuclear moments, $\mu=+0.875479$ 9 from literature and $Q=+0.122$ 10 (2017Wr01) for the stable ^{67}Zn nuclide were used as references.

 ^{69}Zn Levels

E(level) [†]	J $^\pi$	Comments
0	1/2 $^-$	$\mu=+0.557$ 2 (2017Wr01) μ : from measurement of hyperfine structure by collinear laser spectroscopy at ISOLDE-CERN (2017Wr01). J^π : 1/2 from measurement of hyperfine structure by collinear laser spectroscopy at ISOLDE-CERN. Parity from agreement of measured μ with theoretical values (2017Wr01). $\delta\langle r^2 \rangle^{68,69} = 0.026$ 6 (stat) 9 (syst) (2019Xi07).
439	9/2 $^+$	$\mu=-1.1613$ 7 (2017Wr01) $Q=-0.39$ 3 (2017Wr01) $\delta\langle r^2 \rangle^{68,69} = 0.073$ 3 (stat) 8 (syst) (2019Xi07). μ, Q : from measurement of hyperfine structure by collinear laser spectroscopy at ISOLDE-CERN (2017Wr01). J^π : 9/2 from measurement of hyperfine structure by collinear laser spectroscopy at ISOLDE-CERN. Parity from agreement of measured μ with theoretical values (2017Wr01).

[†] From the Adopted Levels, and rounded up to the nearest keV by the evaluator.