

$^9\text{Be}(^{70}\text{Se}, ^{69}\text{Se}\gamma)$ [2015Ni01](#)

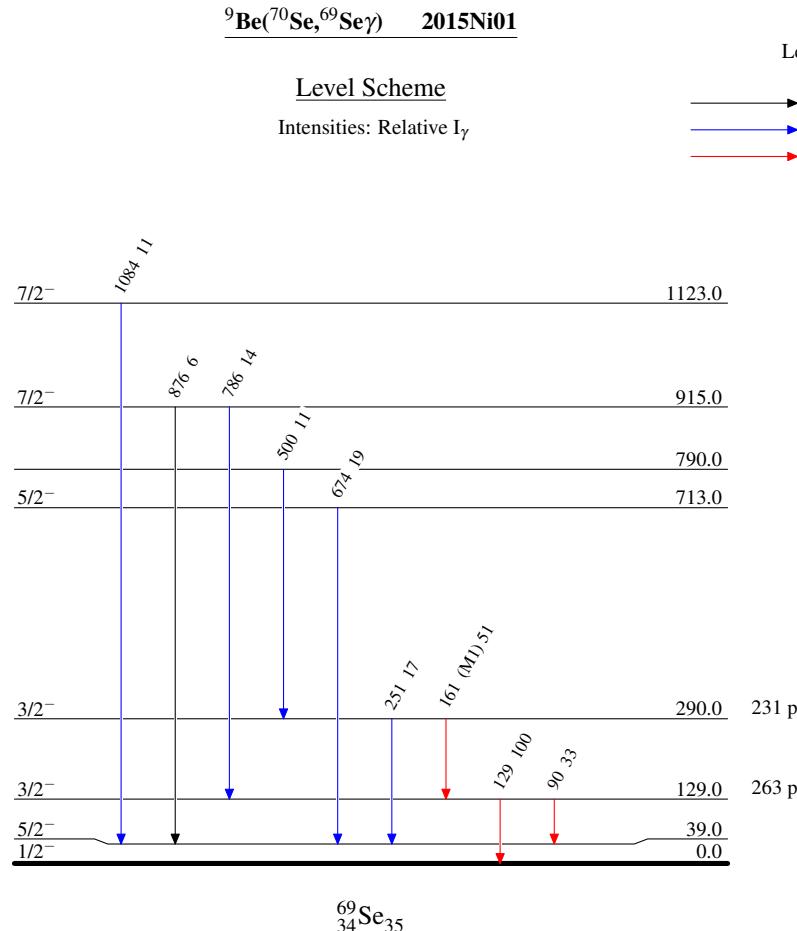
Type	Author	History	
		Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja	NDS 207,1 (2026)	1-Apr-2023

No significant changes from XUNDL compiled dataset by J. Chen (NSCL, MSU), January 26, 2015, except for an unplaced gamma by [2015Ni01](#) that has been included by the evaluator in this dataset.

2015Ni01: E=175 MeV/nucleon ^{78}Kr primary beam was produced from the Coupled Cyclotron Facility at the National Superconducting Cyclotron Laboratory (NSCL) and fragmented on a 399 mg/cm² ^9Be production target. The secondary beam of ^{70}Se was selected using the A1900 fragment separator which then bombarded the 96 mg/cm² ^9Be secondary target housed at the target position of the S800 spectrograph. Reaction products were identified on an event-by-event basis from energy-loss and time-of-flight information using an ionization chamber and plastic scintillators, respectively. γ rays were measured by the SeGA array of segmented high-purity germanium detectors. Measured $E\gamma$, $I\gamma$, γ -ray line shapes. Deduced levels, lifetimes using the γ -ray line-shape method. Experimental results were compared with shell model calculations.

 ^{69}Se Levels

E(level) [†]	J^π	$T_{1/2}^{\ddagger}$	Comments
0.0	$1/2^-$		
39.0 <i>16</i>	$5/2^-$		
129.0 <i>14</i>	$3/2^-$	263 ps <i>12</i>	$T_{1/2}$: from lineshape analysis of 129γ . $\tau=380 \pm 18$ ps adopted from $\tau=380 \pm 9$ (stat) ± 16 (syst) ps (2015Ni01).
290.0 <i>16</i>	$3/2^-$	231 ps <i>11</i>	$T_{1/2}$: weighted average of 225 ps <i>11</i> from the lineshape analysis of 161γ and 250 ps <i>19</i> from the lineshape analysis of 251γ (2015Ni01).
713.0 <i>19</i>	$5/2^-$		
790.0 <i>19</i>			
915.0 <i>16</i>	$7/2^-$		
1123.0 <i>19</i>	$7/2^-$		


[†] From least-squares fit to $E\gamma$ data by the evaluator. No uncertainties are available for the $E\gamma$ data. The least-squares fit is performed with the assumption that the uncertainties are the same for all the $E\gamma$ data. The evaluator notes that the least-squares fit gave a reduced $\chi^2 \approx 0$ which could mean that the gammas provided by the authors may be modified from level energy difference and are not the actual measured values.

[‡] Lifetimes were extracted by comparing the experimental γ -ray lineshapes spectra after Doppler-broadening correction to GEANT simulations ([2015Ni01](#)). The effect of lifetimes on the Doppler-reconstructed lineshapes of γ -ray spectra at relativistic recoil energies is to cause γ emissions at different locations along the beam axis in the target, which results in different Doppler-broadening corrections that distort the lineshapes.

 $\gamma(^{69}\text{Se})$

E_γ	I_γ	$E_i(\text{level})$	J_i^π	E_f	J_f^π	Mult.	Comments
90	33	129.0	$3/2^-$	39.0	$5/2^-$		
129	100	129.0	$3/2^-$	0.0	$1/2^-$		
161	51	290.0	$3/2^-$	129.0	$3/2^-$	(M1)	$B(M1)\downarrow=0.031$ <i>3</i> (2015Ni01) Mult.: from Adopted Gammas.
251	17	290.0	$3/2^-$	39.0	$5/2^-$		
500	11	790.0		290.0	$3/2^-$		
^x 524 <i>3</i>							E_γ : Too weak for coincidence measurement, and hence could not be placed in the level scheme by 2015Ni01 . Shell model calculations using GXPFIA interaction predict $J=(1/2,3/2,5/2)$ (2015Ni01).
674	19	713.0	$5/2^-$	39.0	$5/2^-$		
786	14	915.0	$7/2^-$	129.0	$3/2^-$		
876	6	915.0	$7/2^-$	39.0	$5/2^-$		
1084	11	1123.0	$7/2^-$	39.0	$5/2^-$		

^x γ ray not placed in level scheme.

