Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja	NDS 115, 1 (2014)	31-Jul-2013

 $Q(\beta^{-})=5758 \ 4; \ S(n)=4586 \ 5; \ S(p)=1534\times 10^{1} \ 15; \ Q(\alpha)=-11182 \ 8 2012Wa38$

2012Ga06: Summary and compilation of the discovery of the Ni isotopes.

2010RaZY: Large scale shell model calculation using NR78 interaction to estimate energies of the lowest excited states in nickel isotopes.

2007Gu09: High precision measurement with triple-trap mass spectrometer ISOLTRAP at ISODLE/CERN. Mass excess= -59978.6 3.7.

2002Kr13: Produced from 238 U(p,f) reaction at E= 30 MeV with resonant laser-ionization and mass separation at Louvain-la Neuve cyclotron facility. Production rate was 23 atoms/ μ C 4.

2001Fr21: ⁶⁹Co produced from 30 MeV proton induced fission reaction on ²³⁸U. Extracted selectively by resonant laser ionization and mass separator (LIGIS-LISOL) facility at Leuven. Measured $\beta\gamma$ and $\gamma\gamma$ coincidence spectra with high purity Ge detectors and plastic scintillators. Measured $T_{1/2}$ from timing of β delayed γ intensity.

1999Pr10,1998PrZY: ⁶⁹Ni produced by fragmentation of 70 MeV/nucleon ⁷⁶Ge beam on Be target using the A1200 separator at NSCL, MSU. β delay γ measured with two thin plastic scintillators and two large-volume Ge detectors. Isomer identified with T_{1/2} of 3.4 s 7 at E=321 keV with $\nu p_{1/2}^{-1} \nu g_{9/2}^2$ configuration.

1985Bo49: ⁶⁹Ni produced and identified in W(⁷⁶Ge,X) reaction at 11.5 MeV/nucleon followed by mass separation at GSI facility. Measured γ , β , $\beta\gamma$ coin, isotopic half-life using Ge and Si detectors and plastic scintillators. T_{1/2} from $\beta\gamma$ coincidence data on the decay of 205 γ , 680 γ and 1213 γ .

1985Ru05: ⁶⁹Ni produced by irradiation of W target with 11.4 MeV/nucleon ⁷⁶Se beam followed by on-line mass separation. Measured E γ , I γ , T_{1/2}, $\beta\gamma$ coincidences using 4π plastic β and Ge detectors.

1984De33: Production of neutron rich nuclei from ⁷⁰Zn(¹⁴C,¹⁵O) reaction at E(¹⁴C)=72 MeV. Measured spectra, differential cross sections and ⁶⁹Ni mass excess.

⁶⁹Ni Levels

Cross Reference (XREF) Flags

- A 69 Co β^- decay (227 ms)
- **B** 69 Ni IT decay (0.439 μ s)
 - ²H(⁶⁸Ni,P)

С

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2}	XREF	Comments
0.0	$(9/2^+)$	11.4 s 3	ABC	$\%\beta^{-} = 100; \ \%\beta^{-}n = ?$
				T _{1/2} : weighted average from 11.2 s 9 (2001Fr21,1998Fr15) and 11.4 s 3 (1985Bo49). Other: 10 s 3 (1985Ru05).
321 2	$(1/2^{-})$	3.5 s 4	AB	$\%\beta^{-}\approx 100; \%$ IT<0.01
				%IT: from RUL, BM4W<30.
				$T_{1/2}$: weighted average of 3.5 s 5 (1999Mu17) and 3.4 s 7 (1999Pr10).
915.3	$(5/2^{-})$	120 ps 34	AB	$T_{1/2}$: From IT decay.
1517.4	$(5/2^{-})$		Α	-,- •
1821.0			Α	
1959	$(9/2^{-})$		В	
2241	$(13/2^+)$		В	
2552	$(13/2^{-})$	519 ps 24	BC	$T_{1/2}$: From IT decay.
2700	$(17/2^{-})$	0.439 μs 3	В	%IT=100
	/	1		$T_{1/2}$: From $\gamma(t)$ in Ni(⁸⁶ Kr,X γ) (1998Gr14).

[†] Tentative assignments from level systematics in 1998Gr14 which are in good agreement with large scale shell model calculation

Adopted Levels, Gammas (continued)

⁶⁹Ni Levels (continued)

using NR78 interaction (2010RaZY).

 ‡ From least-square fit to the Ey's, except for the 321 level which is from IT decay.

	$\gamma(^{69})$	'Ni)
--	-----------------	------

E _i (level)	J_i^π	$E_{\gamma}^{@}$	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult. [#]	$lpha^{\dagger}$	Comments
915.3	(5/2 ⁻)	594.3		321	(1/2 ⁻)	[E2]	0.000975 14	
1517.4	(5/2 ⁻)	602.4 1196.5	79 <i>9</i> 100 <i>11</i>	915.3 321	$(5/2^{-})$ $(1/2^{-})$			
1821.0 1959	(9/2-)	303.6 1044 1959		1517.4 915.3 0.0	$(5/2^{-})$ $(5/2^{-})$ $(9/2^{+})$			
2241 2552	(13/2 ⁺) (13/2 ⁻)	2241 311	39	0.0 2241	(9/2 ⁺) (13/2 ⁺)	[E1]	0.001729 25	α =0.001729 25; α (K)=0.001554 22; α (L)=0.0001521 22; α (M)=2.14×10 ⁻⁵ 3; α (N+)=9.06×10 ⁻⁷ α (N)=9.06×10 ⁻⁷ 13 B(E1)(W.u.)=7.2×10 ⁻⁶
		593	100	1959	(9/2 ⁻)	[E2]	0.000981 14	$\alpha = 0.000981 \ 14; \ \alpha(K) = 0.000881 \ 13; \alpha(L) = 8.73 \times 10^{-5} \ 13; \ \alpha(M) = 1.228 \times 10^{-5} \ 18; \alpha(N+) = 5.18 \times 10^{-7} \ \alpha(N) = 5.18 \times 10^{-7} \ 8 \\ B(E2)(W, u) = 0.63 \ 3 \ (2003Ma50) $
2700	(17/2 ⁻)	148		2552	(13/2 ⁻)	[E2]	0.1285	$\begin{aligned} \alpha(\text{K}) = 0.1145 \ 16; \ \alpha(\text{L}) = 0.01224 \ 18; \\ \alpha(\text{M}) = 0.001706 \ 24; \ \alpha(\text{N}+) = 6.39 \times 10^{-5} \ 9 \\ \alpha(\text{N}) = 6.39 \times 10^{-5} \ 9 \\ \text{B}(\text{E2})(\text{W.u.}) = 0.96 \ 4 \end{aligned}$

[†] Additional information 1. [‡] Relative photon branching from each level. Data for the 1517 level are from β^- decay and for the 2552 level are from IT decay.

[#] From ΔJ^{π} . [@] Values quoted to the tenths of keV are from β^- decay. The others are from IT decay.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

⁶⁹₂₈Ni₄₁