⁶⁹As ε decay **1979Su02,1978TeZY**

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja	NDS 115, 1 (2014)	31-Jul-2013

⁶⁹Ge Levels

Parent: ⁶⁹As: E=0.0; $J^{\pi}=5/2^-$; $T_{1/2}=15.2$ min 2; $Q(\varepsilon)=3990 \ 30$; $\%\varepsilon+\%\beta^+$ decay=100.0 1979Su02: measured ε_{γ} , I_{γ} , $\gamma\gamma$ coincidences, internal conversion spectra, and ε decay lifetime. 1978TeZY: ε_{γ} , I_{γ} , $\gamma\gamma$ coincidences, and ε decay lifetime. 1970Mu03: ε_{γ} , I_{γ} , prompt and delayed $\gamma\gamma$ and $\beta+\gamma$ coincidences, β^+ spectra, electron conversion coefficients, $T_{1/2}$.

Others: 1955Bu15, 1970Bo19, 1971Do01.

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} @	E(level) [†]	$J^{\pi \ddagger}$
0	5/2 ^{-#}		1539.7 4	3/2-
86.784 24	$1/2^{-}$	5.1 μs 2	1611.12 <i>17</i>	5/2-
232.736 24	3/2-	176 ps <i>12</i>	1614.32 24	7/2-
374.11 5	$3/2^{-}$		1767.14 13	3/2-#
397.94 15	$9/2^{+}$		1891.03 16	3/2-
812.53 12	$5/2^{+}$		2000.7 3	5/2-
862.21 20	$7/2^{-}$		2236.4 <i>3</i>	3/2-#
933.38 17	$5/2^{-}$		2246.83 17	5/2 ^{-#}
995.13 24	$1/2^{-}$		2594.8 <i>3</i>	3/2 ⁻ ,5/2 ^{-#}
1160.15 17	$3/2^{-}$		2735.49 22	3/2-#
1196.07 14	$5/2^{-}$		2772.99 25	5/2-
1307.32 16	$3/2^{-}$		2946.8 4	
1415.02 17	5/2-		2980.7 <i>3</i>	7/2 ^{-#}
1431.0 4	$9/2^{-}$		3433.4 <i>3</i>	$3/2^{-}, 5/2^{-}, 7/2^{-\#}$
1479.0 <i>3</i>	$\frac{1}{7/2^{-}}$			

[†] From least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels. Supporting arguments from this data set are indicated.

$3/2^{-}, 5/2^{-}, 7/2^{-}$ from allowed ε decay.

[@] From delayed $\beta + \gamma$ and $\gamma \gamma$ coincidences (1970Mu03).

ε, β^+ radiations

E(decay)	E(level)	Iβ ⁺ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger\ddagger}$	Comments
$(5.6 \times 10^2 \ 3)$	3433.4		0.099 25	5.18 12	0.099 25	ε K= 0.8795 2; ε L= 0.10140 18; ε M+= 0.01907 4
$(1.01 \times 10^3 \ 3)$	2980.7		0.174 17	5.44 5	0.174 17	ε K= 0.8811; ε L= 0.1008 6; ε M+=0.01878 2
$(1.04 \times 10^3 \ 3)$	2946.8		0.06 4	5.9 <i>3</i>	0.06 4	ε K= 0.8812; ε L= 0.10003 5; ε M+=0.01877 1
$(1.22 \times 10^3 \ 3)$	2772.99	0.0004 4	0.19 4	5.57 10	0.19 4	av E β = 98 13; ε K= 0.8782 23; ε L= 0.0994 3; ε M+= 0.01865 6
$(1.25 \times 10^3 \ 3)$	2735.49	0.0007 4	0.138 17	5.73 6	0.139 17	av E β = 114 13; ε K= 0.875 4; ε L= 0.0991 5; ε M+= 0.01858 8
$(1.40 \times 10^3 3)$	2594.8	0.0049 17	0.159 18	5.76 5	0.164 18	av E β = 173 13; ϵ K= 0.849 10; ϵ L= 0.0960 12; ϵ M+= 0.01800 22
$(1.74 \times 10^3 \ 3)$	2246.83	0.12 2	0.37 3	5.59 5	0.49 4	av $E\beta$ = 321 14; ε K= 0.647 25; ε L= 0.073 3; ε M+= 0.0137 6
$(1.75 \times 10^3 \ 3)$	2236.4	0.11 2	0.31 4	5.67 6	0.42 5	av $E\beta$ = 325 14; ε K= 0.639 25; ε L= 0.072 3; ε M+= 0.0135 6
$(1.99 \times 10^3 \ 3)$	2000.7	0.187 17	0.213 19	5.95 5	0.40 3	av $E\beta = 428 \ 14$; $\varepsilon K = 0.452 \ 24$; $\varepsilon L = 0.051 \ 3$; $\varepsilon M + = 0.0095 \ 5$
$(2.10 \times 10^3 \ 3)$	1891.03	0.168 12	0.134 11	6.21 5	0.302 18	av E β = 476 14; ε K= 0.376 21; ε L= 0.0423
			a			

Continued on next page (footnotes at end of table)

			⁶⁹ As ε ά	lecay 19	79Su02,1978T	CeZY (continued)					
ϵ, β^+ radiations (continued)											
E(decay)	E(level)	$\mathrm{I}\beta^+$ ‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\dagger \ddagger}$	Comments					
$(2.22 \times 10^3 \ 3)$	1767.14	0.65 5	0.36 3	5.82 5	1.01 7	23; εM += 0.0079 5 av E β = 531 14; εK = 0.304 17; εL = 0.0342 19: εM += 0.0064 4					
$(2.38 \times 10^3 \ 3)$	1614.32	0.46 4	0.17 2	6.20 5	0.63 5	av $E\beta = 600 14$; $\varepsilon K = 0.234 13$; $\varepsilon L = 0.0263 15$; $\varepsilon M + = 0.0049 3$					
$(2.38 \times 10^3 \ 3)$	1611.12	0.25 2	0.093 10	6.47 6	0.34 3	av $E\beta = 601 \ 14$; $\varepsilon K = 0.233 \ 13$; $\varepsilon L = 0.0261 \ 15$; $\varepsilon M + = 0.0049 \ 3$					
$(2.45 \times 10^3 \ 3)$	1539.7	0.086 9	0.028 3	7.02 6	0.114 12	av $E\beta = 633 \ 14$; $\varepsilon K = 0.206 \ 11$; $\varepsilon L = 0.0232 \ 13$; $\varepsilon M + = 0.00434 \ 24$					
$(2.51 \times 10^3 \ 3)$	1479.0	0.170 10	0.048 4	6.81 5	0.218 12	av $E\beta = 661 \ 14; \ \varepsilon K = 0.187 \ 10; \ \varepsilon L = 0.0209 \ 11; \ \varepsilon M + = 0.00393 \ 21$					
$(2.57 \times 10^3 \ 3)$	1415.02	0.21 2	0.051 6	6.80 <i>6</i>	0.26 3	av $E\beta = 690 \ 14; \ \varepsilon K = 0.168 \ 9; \ \varepsilon L = 0.0189 \ 10; \ \varepsilon M + = 0.00354 \ 19$					
$(2.68 \times 10^3 \ 3)$	1307.32	0.34 3	0.068 7	6.71 6	0.41 4	av $E\beta = 739 \ 15; \ \varepsilon K = 0.142 \ 7; \ \varepsilon L = 0.0159 \ 8; \ \varepsilon M + = 0.00298 \ 15$					
$(2.79 \times 10^3 \ 3)$	1196.07	0.52 4	0.084 8	6.65 5	0.60 5	av $E\beta = 790 \ 15; \ \varepsilon K = 0.119 \ 6; \ \varepsilon L = 0.0134 \ 7; \ \varepsilon M + = 0.00251 \ 12$					
$(2.83 \times 10^3 \ 3)$	1160.15	0.41 2	0.062 4	6.79 4	0.468 25	av $E\beta = 806 \ I5; \ \varepsilon K = 0.113 \ 6; \ \varepsilon L = 0.0127 \ 6; \ \varepsilon M + = 0.00238 \ I2$					
$(3.06 \times 10^3 \ 3)$	933.38	0.48 6	0.051 7	6.94 7	0.53 7	av $E\beta = 911 \ 15; \ \varepsilon K = 0.082 \ 4; \ \varepsilon L = 0.0092 \ 4; \ \varepsilon M + = 0.00173 \ 8$					
$(3.13 \times 10^3 \ 3)$	862.21	0.52 5	0.049 5	6.98 5	0.57 5	av $E\beta = 944 \ I5; \ \varepsilon K = 0.075 \ 4; \ \varepsilon L = 0.0084 \ 4; \ \varepsilon M + = 0.00157 \ 7$					
$(3.18 \times 10^3 \ 3)$	812.53	0.64 9	0.057 8	6.75 4	0.70 10	av $E\beta = 967 \ 15; \ \varepsilon K = 0.070 \ 3; \ \varepsilon L = 0.0078 \ 4; \ \varepsilon M + = 0.00147 \ 6$					
$(3.59 \times 10^3 \ 3)$	397.94	0.70 7	0.095 10	8.51 ¹ <i>u</i> 6	0.79 8	av $E\beta$ = 1182 15; ε K= 0.103 4; ε L= 0.0117 5; ε M+= 0.00219 8					
$(3.62 \times 10^3 \ 3)$	374.11	0.76 8	0.038 4	7.21 5	0.80 8	av $E\beta = 1172 \ 15; \ \varepsilon K = 0.0414 \ 15; \ \varepsilon L = 0.00464 \ 17; \ \varepsilon M + = 0.00087 \ 3$					
$(3.76 \times 10^3 \ 3)$	232.736	14.0 5	0.60 3	6.05 2	14.6 5	av $E\beta$ = 1238 15; ε K = 0.0356 12; ε L = 0.00398 14; ε M+= 0.000746 25					
$(3.99 \times 10^3 \ 3)$	0	73.3 9	2.47 8	5.49 2	75.8 9	av $E\beta = 1349 \ I5; \ \varepsilon K = 0.0281 \ 9; \ \varepsilon L = 0.00315 \ I0; \ \varepsilon M + = 0.000590 \ I9$					

[†] From intensity balance at each level. $\varepsilon + \beta^+$ feeding to the g.s. has been calculated from I $\gamma(\pm)$ =1721 36 (1979Su02). [‡] Absolute intensity per 100 decays.

⁶⁹As ε decay **1979Su02,1978TeZY** (continued)

 $\gamma(^{69}{\rm Ge})$

I γ normalization: from I $\gamma(\gamma^{\pm})=1721$ 36 (1979Su02), theoretical ε/β^+ ratios, and intensity imbalance at each level. This experimental value is a weighted average of several independent measurements and has been corrected for annihilation-in-flight by authors. I $\gamma(\gamma^{\pm})=1360$ 20 (1978TeZY). $\gamma\gamma$ coincidences from 1979Su02 and 1978TeZY.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@] &	Comments
x68.2 5 86.79 3	31.5 6	86.784	1/2-	0	5/2-	E2		1.267	E_{γ} : from 1971Do01. $\alpha(K)=1.095$ 16; $\alpha(L)=0.1483$ 21; $\alpha(M)=0.0219$ 3 $\alpha(N)=0.001071$ 15 $\alpha(K)=n=0.063$ and $\alpha(L)=n=0.069$ 7 from
141.34 6	0.6 1	374.11	3/2-	232.736	3/2-	[M1]		0.0314	$\alpha(K)\exp^{-1.06} \beta$ and $\alpha(L)\exp^{-1.06} \beta$ from $\alpha(K)\exp/(\alpha(L)\exp + \alpha(M)\exp)=6.4 2 (1979Su02).$ $\alpha(K)=0.0280 4; \alpha(L)=0.00297 5; \alpha(M)=0.000444 7$ $\alpha(N)=2.88\times10^{-5} 4$
145.96 <i>3</i>	45.4 6	232.736	3/2-	86.784	$1/2^{-}$	M1+E2	+0.19 7	0.034 5	$\alpha(K) = 0.0304; \alpha(L) = 0.00335; \alpha(M) = 0.000497$
232.73 3	100	232.736	3/2-	0	5/2-	M1+E2	0.74 16	0.0169 24	$\alpha(N)=3.1\times10^{-5} 4$ $\alpha(K)\exp=0.028 4 (1979Su02)$ $\alpha(K)\exp=0.015 2 (1979Su02)$ $\alpha(K)=0.0150 22; \alpha(L)=0.00163 24; \alpha(M)=0.00024 4$ $\alpha(K)=0.0105 22; \alpha(L)=0.00163 24; \alpha(M)=0.00024 4$
287.3 1	13.0 2	374.11	3/2-	86.784	$1/2^{-}$	M1+E2	+0.11 1	0.00529	$\alpha(N)=1.50\times 10^{-5} 21$ $\alpha(K)=0.00472 \ 7; \ \alpha(L)=0.000492 \ 8; \ \alpha(M)=7.35\times 10^{-5} \ 11$ $\alpha(N)=4.80\times 10^{-6} \ 7$
374.1 2	4.1 <i>I</i>	374.11	3/2-	0	5/2-	M1+E2	-0.17 9	0.00283 13	$\alpha(K) = 0.00253 \ 11; \ \alpha(L) = 0.000262 \ 12; \ \alpha(M) = 3.91 \times 10^{-5} \ 18$
398.1 2	9.4 6	397.94	9/2+	0	5/2-	M2		0.00873	$\alpha(N)=2.56\times10^{-6}$ <i>11</i> $\alpha(K)=0.00776$ <i>11</i> ; $\alpha(L)=0.000838$ <i>12</i> ; $\alpha(M)=0.0001255$ <i>18</i> $\alpha(N)=8.14\times10^{-6}$ <i>12</i>
414.5 2	1.4 2	812.53	5/2+	397.94	9/2+	E2(+M3)	+0.03 3	0.00430 9	$\alpha(K) = 0.00383 \ 8; \ \alpha(L) = 0.000406 \ 9; \ \alpha(M) = 6.05 \times 10^{-5} \ 13$
438.4 2	2.5 4	812.53	5/2+	374.11	3/2-	E1		9.80×10 ⁻⁴	$ \begin{array}{l} \alpha(\mathbf{N}) = 3.81 \times 10^{-6} 8 \\ \alpha(\mathbf{K}) = 0.000877 \ 13; \ \alpha(\mathbf{L}) = 8.95 \times 10^{-5} \ 13; \\ \alpha(\mathbf{M}) = 1.334 \times 10^{-5} \ 19 \end{array} $
559.1 3	1.3 3	933.38	5/2-	374.11	3/2-	M1+E2	-1.2 1	0.00143 4	$\alpha(N)=8.65\times10^{-7}$ 13 $\alpha(K)=0.00128$ 3; $\alpha(L)=0.000133$ 3; $\alpha(M)=1.98\times10^{-5}$ 5 $\alpha(N)=1.28\times10^{-6}$ 3
620.8 4	0.5 1	995.13	1/2-	374.11	3/2-	(M1)		8.57×10 ⁻⁴	$\alpha(K) = 1.20816 J = 0.00766 J = 0.00766 M = 1.173 \times 10^{-5} I = 1.173 \times 10^{-5}$
x656.7 6	0.5 1								$\alpha(N) = 7.73 \times 10^{-7} 11$
681.3 4	0.8 3	1614.32	7/2-	933.38	5/2-	M1+E2	+0.04 3	6.99×10^{-4}	$\alpha(K)=0.000625 \ 9; \ \alpha(L)=6.39\times10^{-5} \ 9; \ \alpha(M)=9.55\times10^{-6} \ 14$
762.4 3	0.5 1	995.13	1/2-	232.736	3/2-	M1(+E2)	-0.7 +5-10	0.00060 7	$\alpha(N)=0.50\times 10^{-7} 9$ $\alpha(K)=0.00053 6; \alpha(L)=5.5\times 10^{-5} 6; \alpha(M)=8.2\times 10^{-6} 9$ $\alpha(N)=5.4\times 10^{-7} 6$
812.4 2	4.2 7	812.53	5/2+	0	5/2-	(E1+M2)		2.42×10 ⁻⁴ 11	$\alpha(K)=0.000216 \ 10; \ \alpha(L)=2.20\times 10^{-5} \ 10; \ \alpha(M)=3.28\times 10^{-6}$

 ω

						69 As ε decay	1979Su02,	1978TeZY (cont	tinued)
							$\gamma(^{69}\text{Ge})$ (cor	tinued)	
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	E_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@] &	Comments
									15 $\alpha(N)=2.14\times10^{-7}$ 10 I_{γ} : Deduced by evaluator based on the ratio of $I_{\gamma}(818)/I_{\gamma}(414+438)=1.08$ 11 in $(\alpha,n\gamma)$. $I_{\gamma}(812)=7.4$ 4 was determined in 1979Su02. Evaluator assumes the $I_{\gamma}=3.2$ 8 difference is for placement elsewhere, probably the 1210 level is being populated here. δ : -0.13 3 from $\gamma(\theta)$ in $(p,n\gamma)$; +0.17 11 from $\gamma(\theta)$ in
822.0 2	3.2 3	1196.07	5/2-	374.11	3/2-	M1+E2	-0.7 5	0.00050 4	$\alpha(X)=0.00045 \ 3; \ \alpha(L)=4.6\times10^{-5} \ 3; \ \alpha(M)=6.9\times10^{-6} \ 5 \ \alpha(N)=4.5\times10^{-7} \ 3$
846.6 4	1.0 3	933.38	5/2-	86.784	1/2-	E2(+M3)	+0.05 10	0.00054 4	$\alpha(K) = 0.00048 \ 4; \ \alpha(L) = 4.9 \times 10^{-5} \ 4; \ \alpha(M) = 7.4 \times 10^{-6} \ 6 \ \alpha(N) = 4.8 \times 10^{-7} \ 4$
862.2 2	5.2 4	862.21	7/2-	0	5/2-	M1+E2	+2.4 3	4.95×10 ⁻⁴ 8	$\alpha(L) = 0.000443 \ 7; \ \alpha(L) = 4.55 \times 10^{-5} \ 7; \ \alpha(M) = 6.79 \times 10^{-6} \ 11 \ (M) = 4.20 \times 10^{-7} \ 7$
927.4 4	0.7 1	1160.15	3/2-	232.736	3/2-	(M1+E2)	-0.6 +3-24	0.00038 4	$\alpha(N) = 4.42 \times 10^{-7}$ $\alpha(K) = 0.00034 \ 4; \ \alpha(L) = 3.5 \times 10^{-5} \ 4; \ \alpha(M) = 5.2 \times 10^{-6} \ 6$ $\alpha(N) = 3.4 \times 10^{-7} \ 4$
933.3 <i>3</i>	4.1 2	933.38	5/2-	0	5/2-	M1+E2	+0.20 6	$3.60 \times 10^{-4} 6$	$\alpha(K) = 0.000322 5; \alpha(L) = 3.28 \times 10^{-5} 5; \alpha(M) = 4.90 \times 10^{-6} 8$ $\alpha(N) = 3.23 \times 10^{-7} 5$
963.4 4	0.5 1	1196.07	5/2-	232.736	3/2-	M1+E2		0.00036 3	$\alpha(K)=0.000323\ 24;\ \alpha(L)=3.3\times10^{-5}\ 3;\ \alpha(M)=4.9\times10^{-6}\ 4$ $\alpha(N)=3.23\times10^{-7}\ 23$ $\delta: -0.27\ 15\ \text{or}\ -1.6\ +5-10\ \text{from}\ \gamma(\theta)\ \text{in}\ (\text{p.ny}).$
1040.8 2	0.7 1	1415.02	5/2-	374.11	3/2-				E_{γ} : weighted average from the ⁷⁰ Ge(p,d γ) reaction and ⁶⁹ As ε decay (1978TeZY). Placement from 1978TeZY.
1073.4 2	3.0 1	1160.15	3/2-	86.784	1/2-	M1+E2	+0.31 6	2.71×10^{-4}	$\alpha(K)=0.000243$ 4; $\alpha(L)=2.47\times10^{-5}$ 4; $\alpha(M)=3.68\times10^{-6}$ 6 $\alpha(N)=2.43\times10^{-7}$ 4
1104.5 <i>10</i>		1479.0	7/2-	374.11	3/2-	E2		2.82×10 ⁻⁴	$\alpha(K)=0.000251 4; \alpha(L)=2.57 \times 10^{-5} 4; \alpha(M)=3.83 \times 10^{-6} 6$ $\alpha(N)=2.51 \times 10^{-7} 4; \alpha(IPF)=9.0 \times 10^{-7} 3$ $E_{\gamma}: 1105.2 2$ from adopted gammas. Placement from 1978TeZY. $I_{\gamma}: \gamma$ not observed in singles, only in $\gamma\gamma$ coincidences (1978TeZY).
1160.0 4	0.6 1	1160.15	3/2-	0	5/2-	(M1)		2.32×10^{-4}	$\alpha(K)=0.000205 \ 3; \ \alpha(L)=2.09\times10^{-5} \ 3; \ \alpha(M)=3.12\times10^{-6} \ 5 \ \alpha(N)=2.06\times10^{-7} \ 3; \ \alpha(IPF)=2.82\times10^{-6} \ 5$
1165.8 ^{#b} 3	<0.4 [#]	1539.7	3/2-	374.11	3/2-	M1+E2	+0.45 5	2.34×10^{-4}	α (K)=0.000207 3; α (L)=2.10×10 ⁻⁵ 3; α (M)=3.14×10 ⁻⁶ 5 α (N)=2.07×10 ⁻⁷ 3; α (IPF)=3.41×10 ⁻⁶ 7
1182.4 4	0.4 1	1415.02	5/2-	232.736	3/2-	M1+E2	+0.49 10	2.30×10^{-4}	$\alpha(K)=0.000201 \ 3; \ \alpha(L)=2.05\times10^{-5} \ 4; \ \alpha(M)=3.05\times10^{-6} \ 5 \ \alpha(N)=2.01\times10^{-7} \ 3; \ \alpha(IPF)=4.85\times10^{-6} \ 14$
1196.0 <i>2</i> ^x 1216.1 [#] <i>1</i>	1.8 <i>1</i> 0.9 [#] 1	1196.07	5/2-	0	5/2-	D+Q			δ : -0.1 4 or -2.0 +10-37 from $\gamma(\theta)$ in (p,n γ).

4

From ENSDF

 $_{32}^{69}\text{Ge}_{37}$ -4

69 As ε decay	1979Su02,1978TeZY	(continued)
--------------------------------	-------------------	-------------

 $\gamma(^{69}\text{Ge})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@] &	Comments
1220.4 3	2.4 1	1307.32	3/2-	86.784	$1/2^{-}$	M1+E2	+0.3 1	2.18×10 ⁻⁴ 4	$\alpha(K)=0.000187 \ 3; \ \alpha(L)=1.90\times10^{-5} \ 3; \ \alpha(M)=2.83\times10^{-6}$
									5 $\alpha(N)=1.87\times10^{-7}$ 3; $\alpha(IPF)=8.89\times10^{-6}$ 22
1236.9 [#] 2	0.5 [#] 1	1611.12	5/2-	374.11	3/2-				
1240.0 <i>10</i> 1287.4 <i>3</i>	1.0 <i>4</i> 0.6 <i>1</i>	2236.4 2594.8	$3/2^{-}$ $3/2^{-},5/2^{-}$	995.13 1307.32	$\frac{1}{2^{-}}$ $\frac{3}{2^{-}}$				E_{γ} : 1239.3 γ placed from 1614 level by 19781eZY.
1303 <i>I</i>	0.3 1	2236.4	3/2-	933.38	5/2-				
1307.3 2	2.2 1	1307.32	3/2-	0	5/2-	(M1(+E2))	+0.0 1	2.04×10^{-4}	α (K)=0.0001622 23; α (L)=1.645×10 ⁻⁵ 23; α (M)=2.46×10 ⁻⁶ 4
1200.2.2	051	2725 40	2/2-	1415.02	5/2-				α (N)=1.624×10 ⁻⁷ 23; α (IPF)=2.23×10 ⁻⁵ 4
1320.3 3	0.5 I 1 0 I	2/35.49	5/2 5/2-	1415.02	3/2 3/2-	M1 + E2	+0.30.2	2.02×10^{-4}	$\alpha(K) = 0.0001474.21; \alpha(I) = 1.405 \times 10^{-5}.21;$
1379.0 5	1.9 1	1011.12	5/2	252.750	5/2	WIT+E2	+0.39 2	2.02×10	$\alpha(\mathbf{K}) = 0.0001474 \ 21, \ \alpha(\mathbf{L}) = 1.493 \times 10^{-5} \ 21, \ \alpha(\mathbf{M}) = 2.23 \times 10^{-6} \ 4 \ \alpha(\mathbf{N}) = 1.474 \times 10^{-7} \ 21; \ \alpha(\mathbf{IPE}) = 3.77 \times 10^{-5} \ 6$
1381 4 3	251	1614 32	7/2-	232 736	3/2-	F2		2.21×10^{-4}	$\alpha(\mathbf{K}) = 0.0001544 \ 22 \ \alpha(\mathbf{L}) = 1.572 \times 10^{-5} \ 22 \ 22 \ \alpha(\mathbf{L}) = 1.572 \times 10^{-5} \ \alpha(\mathbf{L}) = 1.572$
1501.15	2.5 1	1011.52	172	252.150	5/2	112		2.21/10	$\alpha(M)=2.35\times10^{-6} 4$
								4	$\alpha(N)=1.541\times10^{-7}$ 22; $\alpha(IPF)=4.81\times10^{-5}$ 7
1415 <i>1</i>	1.8 2	1415.02	5/2-	0	5/2-	M1+E2	-0.65 10	$2.06 \times 10^{-4} 4$	$\alpha(\mathbf{K})=0.0001415\ 21;\ \alpha(\mathbf{L})=1.435\times10^{-5}\ 21;$
									$\alpha(N) = 2.14 \times 10^{-7} 21$; $\alpha(IPF) = 4.81 \times 10^{-5} 12$
1431.0 4	0.6 4	1431.0	9/2-	0	$5/2^{-}$	E2		2.23×10^{-4}	$\alpha(K)=0.0001436\ 21;\ \alpha(L)=1.460\times10^{-5}\ 21;$
			,		,				$\alpha(M)=2.18\times10^{-6}$ 3
			T /0-		= /a+				$\alpha(N)=1.432\times10^{-7}\ 20;\ \alpha(IPF)=6.23\times10^{-5}\ 9$
1434.3 3	0.9 1	2246.83	5/2-	812.53	5/2+	M1 . E2	0 45 25	2.05×10^{-4} 5	$(K) = 0.0001225 22 + (L) = 1.252 \times 10^{-5} 22$
1452.0 3	0.3 1	1559.7	3/2	80.784	1/2	MI+E2	-0.45 25	2.05×10 · 5	$\alpha(\mathbf{K})=0.0001355\ 22;\ \alpha(\mathbf{L})=1.555\times10^{-5}\ 25;\ \alpha(\mathbf{M})=2.02\times10^{-6}\ 4$
1470.0.2	201	1470.0	7/2-	0	5/2-	$(\mathbf{M}1 + \mathbf{E}2)$		216×10^{-4} 12	$\alpha(N)=1.335\times10^{-7}$ 22; $\alpha(IPF)=5.6\times10^{-5}$ 3 $\alpha(K)=0.000121$ 4; $\alpha(L)=1.22\times10^{-5}$ 4; $\alpha(M)=1.08\times10^{-6}$
1479.0 3	2.0 1	14/9.0	1/2	0	5/2	(M1+E2)		2.10×10 · 15	$\alpha(\mathbf{K})=0.0001514, \alpha(\mathbf{L})=1.55\times10^{-4}4, \alpha(\mathbf{M})=1.98\times10^{-6}$
									$\alpha(N)=1.31\times10^{-7}$ 4; $\alpha(IPF)=7.0\times10^{-5}$ 9
ш	щ								δ : +0.05 2 or +4.8 8.
$x_{1516.4}^{\#} 3$	0.4 [#] 1								
x1525.1# 2	1.3" 2	1767 14	2/2-	000 70 (2/2-		050	2 17 10-4 5	(T) 0.0001000 10 (1) 1.010 10-5 10
1534.7 3	3.4 2	1/0/.14	3/2	232.736	3/2	MI+E2	+0.5 2	2.1/×10 · 3	$\alpha(\mathbf{K})=0.0001202\ 19;\ \alpha(\mathbf{L})=1.218\times10^{-5}\ 19;$ $\alpha(\mathbf{M})=1.82\times10^{-6}\ 3$
									$\alpha(M) = 1.02 \times 10^{-5}$ $\alpha(N) = 1.202 \times 10^{-7}$ 18: $\alpha(IPF) = 8.2 \times 10^{-5}$ 3
1540.0 5	0.75 3	1539.7	3/2-	0	$5/2^{-}$				
^x 1585.9 [#] 2	1.3 [#] 2								-
1612 <i>I</i>	1.0 1	1611.12	5/2-	0	5/2-	(M1+E2)	-1.7 +3-8	$2.50 \times 10^{-4} 6$	$\alpha(K)=0.0001119 \ 17; \ \alpha(L)=1.135\times 10^{-5} \ 17; \ \alpha(M)=1.60\times 10^{-6} \ 3$
									$\alpha(N)=1.116\times 10^{-7}$ 17; $\alpha(IPF)=0.000125$ 4

S

 $_{32}^{69}\text{Ge}_{37}$ -5

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [‡]	δ^{\ddagger}	α [@] &	Comments
1614 <i>I</i>	2.5 3	1614.32	7/2-	0	5/2-	M1+E2	-1.97 6	2.52×10 ⁻⁴	α (K)=0.0001119 <i>16</i> ; α (L)=1.135×10 ⁻⁵ <i>16</i> ; α (M)=1.693×10 ⁻⁶ <i>24</i> α (N)=1.116×10 ⁻⁷ <i>16</i> ; α (IPF)=0.0001270 <i>19</i>
1639 <i>1</i> 1658.3 2	0.2 <i>3</i> 0.95 <i>7</i>	2946.8 1891.03	3/2-	1307.32 232.736	3/2 ⁻ 3/2 ⁻	M1+E2	-1.2 4	2.57×10 ⁻⁴ 8	$\alpha(K)=0.0001053 \ 17; \ \alpha(L)=1.067\times 10^{-5} \ 18; \ \alpha(M)=1.59\times 10^{-6} \ 3$
1680.3 2	2.7 2	1767.14	3/2-	86.784	1/2-	M1+E2	-0.97 11	2.59×10 ⁻⁴ 5	$\alpha(N)=1.051\times10^{-7} \ 17; \ \alpha(IPF)=0.000139 \ 7$ $\alpha(K)=0.0001023 \ 15; \ \alpha(L)=1.036\times10^{-5} \ 15; \ \alpha(M)=1.547\times10^{-6} \ 22$ $\alpha(N)=1.021\times10^{-7} \ 15; \ \alpha(IPF)=0.000145 \ 2$
1767.0 2	3.2 4	1767.14	3/2-	0	5/2-	M1+E2	+1.2 2	2.89×10 ⁻⁴ 6	$\alpha(N)=1.021\times10^{-5} 13; \ \alpha(DPF)=0.000145 3$ $\alpha(K)=9.34\times10^{-5} 14; \ \alpha(L)=9.45\times10^{-6} 14; $ $\alpha(M)=1.411\times10^{-6} 21 $ $\alpha(N)=9.31\times10^{-8} 14; \ \alpha(DPF)=0.000185 5$
1804.0 <i>3</i>	1.1 <i>1</i>	1891.03	3/2-	86.784	1/2-	M1+E2	-0.3 1	2.79×10 ⁻⁴ 5	$\alpha(N) = 8.84 \times 10^{-5} \ 13; \ \alpha(L) = 8.93 \times 10^{-6} \ 13; \alpha(M) = 1.334 \times 10^{-6} \ 19 \alpha(N) = 8.83 \times 10^{-8} \ 13; \ \alpha(IPF) = 0.000181 \ 4$
1823.1 <i>4</i> 1872.4 <i>4</i> 1891.3 <i>4</i>	0.3 2 0.4 <i>1</i> 0.72 5	3433.4 2246.83 1891.03	3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻ 5/2 ⁻ 3/2 ⁻	1611.12 374.11 0	5/2 ⁻ 3/2 ⁻ 5/2 ⁻				
2000.7 3	3.7 2	2000.7	5/2-	0	5/2-	M1+E2	-2.0 2	3.84×10 ⁻⁴	$\alpha(K)=7.46\times10^{-5}$ 11; $\alpha(L)=7.55\times10^{-6}$ 11; $\alpha(M)=1.127\times10^{-6}$ 16 $\alpha(N)=7.44\times10^{-8}$ 11; $\alpha(IPF)=0.000301$ 5
2014.1 <i>3</i>	2.6 2	2246.83	5/2-	232.736	3/2-	M1+E2	-1.7 1	3.86×10 ⁻⁴	$\alpha(K)=7.36\times10^{-5}$ 11; $\alpha(L)=7.44\times10^{-6}$ 11; $\alpha(M)=1.111\times10^{-6}$ 16 $\alpha(N)=7.34\times10^{-8}$ 11; $\alpha(IPF)=0.000304$ 5
2149.7 3	2.6 1	2236.4	3/2-	86.784	1/2-	M1+E2	-1.7 1	4.42×10 ⁻⁴	$\alpha(K)=6.55\times10^{-5} \ 10; \ \alpha(L)=6.61\times10^{-6} \ 10; \ \alpha(M)=9.87\times10^{-7} \ 14 \ \alpha(N)=6.52\times10^{-8} \ 10; \ \alpha(IPF)=0.000369 \ 6$
2167.2 <i>4</i> 2246.9 <i>3</i> <i>x</i> 2274.5 <i>10</i> <i>x</i> 2333 8 <i>3</i>	0.8 <i>1</i> 0.64 <i>5</i> 0.34 <i>3</i> 0.4 <i>1</i>	2980.7 2246.83	7/2 ⁻ 5/2 ⁻	812.53 0	5/2+ 5/2-				
2361.0 <i>10</i> 2398.7 <i>3</i> 2499.2 <i>4</i> 2503.0 <i>4</i> 2508.3 <i>4</i> 2583.3 <i>3</i> 2686.4 <i>4</i> 2735.4 <i>4</i> 2946.8 <i>4</i>	0.6 <i>I</i> 1.1 <i>I</i> 0.4 <i>I</i> 0.28 <i>3</i> 0.31 <i>5</i> 0.8 <i>I</i> 0.6 <i>3</i> 0.5 <i>I</i> 0.39 <i>3</i>	2594.8 2772.99 3433.4 2735.49 2594.8 2980.7 2772.99 2735.49 2946.8	3/2 ⁻ ,5/2 ⁻ 5/2 ⁻ 3/2 ⁻ ,5/2 ⁻ ,7/2 ⁻ 3/2 ⁻ ,5/2 ⁻ 7/2 ⁻ 5/2 ⁻ 3/2 ⁻	232.736 374.11 933.38 232.736 86.784 397.94 86.784 0 0	3/2 ⁻ 3/2 ⁻ 5/2 ⁻ 3/2 ⁻ 1/2 ⁻ 9/2 ⁺ 1/2 ⁻ 5/2 ⁻ 5/2 ⁻				

6

From ENSDF

$\gamma(^{69}\text{Ge})$ (continued)

 $\frac{\mathrm{E}_{\gamma}^{\dagger}}{^{*}2987.0} \frac{\mathrm{I}_{\gamma}^{\dagger}a}{0.083} \frac{\mathrm{E}_{i}(\mathrm{level})}{3058.5} \frac{\mathrm{J}_{i}^{\pi}}{10} \frac{\mathrm{E}_{f}}{0.212} \frac{\mathrm{J}_{f}^{\pi}}{3433.4} \frac{\mathrm{J}_{2}^{-},5/2^{-},7/2^{-}}{374.11} \frac{\mathrm{J}_{f}^{-}}{374.11} \frac{\mathrm{J}_{2}^{-}}{374.11} \frac{\mathrm{J}_{2}^{-}}{374.11} \frac{\mathrm{J}_{2}^{-}}{\mathrm{J}_{2}^{-}}$ [†] From 1979Su02, unless otherwise noted. [‡] From 1978TeZY. [@] From adopted gammas. [#] From 1978TeZY. [@] From adopted γ' s. [&] Additional information 1. ^a For absolute intensity per 100 decays, multiply by 0.1089 37. ^b Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{69}_{32}\text{Ge}_{37}$ -8

 $^{69}_{32}{
m Ge}_{37}$

 $^{69}_{32}\text{Ge}_{37}$ -9

9