69 Ga(p,n γ) 1978Pa15,1973Is02

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja	NDS 115, 1 (2014)	31-Jul-2013

1978Pa15: E(p)=3-5.6 MeV; E γ , I γ , $\gamma(\theta)$, excitation functions and T_{1/2} by DSAM.

1973Is02: E(p)=3.4-5.0 MeV; E γ , I γ , α (exp) and excitation functions. In-beam sector field β^- spectrometer. 1970Ch05: $\gamma(\theta,H,t)$ and T_{1/2} for the 398 level by stroboscopic observation of perturbed angular distributions.

69	Ge	L	ev	el	s
----	----	---	----	----	---

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0.0	5/2-		
86.76 2	$1/2^{-}$		
232.66 2	3/2-		
373.94 2	3/2-		
397.94 2	9/2+	2.84 µs 7	$T_{1/2}$: from stroboscopic-resonance data (1970Ch05).
812.17 2	5/2+		J^{π} : 5/2 from $\gamma(\theta)$ of 414 γ and 438 γ .
862.01 3	7/2-	2.8 ps 14	J^{π} : 7/2 from $\gamma(\theta)$ of 862 γ and 629 γ ; this agrees with excitation function data.
933.14 2	5/2-	1.5 ps 7	J^{π} : 5/2 from $\gamma(\theta)$ of 559 γ , 846 γ and 933 γ .
994.89 <i>4</i>	$1/2^{-}$	1.2 ps 7	J^{π} : 1/2 from isotropic $\gamma(\theta)$ of 621 γ , 762 γ , and 995 γ .
1159.89 4	3/2-	1.2 ps 6	J ^{π} : 1/2 or 3/2 from $\gamma(\theta)$ of 1073 γ and 927 γ ; excitation functions indicate 3/2 or 5/2.
1195.71 4	5/2-	0.55 ps 14	J^{π} : 5/2 consistent with $\gamma(\theta)$ of 822 γ and 963 γ ; excitation functions favor J=3/2 or 5/2.
1210.11 10	7/2+		J ^{π} : 7/2 from $\gamma(\theta)$ of 812 γ deexciting this level; excitation function favors J \leq 7/2.
1278.36 5	$1/2^{-}, 3/2^{-}$	1.8 ps 12	J^{π} : 1/2 or 3/2 from $\gamma(\theta)$ of 904 γ ; J=1/2 from excitation function.
1306.88 4	3/2-	0.50 ps 17	J ^{π} : 1/2, 3/2 from $\gamma(\theta)$ of 1220 γ and 1306 γ ; excitation function rules out 1/2 hence, prefer
			J=3/2.
1350.39 8	$11/2^{+}$	0.50 ps 11	J^{π} : 11/2 or 13/2 from $\gamma(\theta)$ of 952 γ ; excitation function rules out J=13/2; hence prefer
			J=11/2.
1414.78 6	5/2-	1.0 ps 4	J^{π} : 5/2 from $\gamma(\theta)$ of 1414 γ and 1182 γ and excitation function.
1430.30 10	9/2-	0.54 ps 14	J^{π} : 9/2, 7/2 from $\gamma(\theta)$ of 1430 γ ; excitation function excludes J=7/2.
1432.60 8	3/2+		J^{π} : 1/2 or 3/2 suggested by $\gamma(\theta)$ of 620 γ and 1059 γ ; excitation function favors J=3/2.
1465.98 8	9/2+	2.1 ps 14	J^{π} : 9/2 from $\gamma(\theta)$ of 1068 γ .
1478.73 8	7/2-	0.30 ps 8	J^{π} : 7/2, 5/2 from $\gamma(\theta)$ of 1479 γ ; $\gamma(\theta)$ of 1105 γ consistent with J=7/2.
1539.26 9	3/2-	0.35 ps 14	J^{π} : 1/2, 3/2 from $\gamma(\theta)$ of 1452 γ and 1165 γ ; excitation function excludes J=1/2.
1590.78 12	7/2+	2.1 ps 14	J^{π} : 5/2, 7/2, and 9/2 from $\gamma(\theta)$ of 779 γ ; excitation function excludes J=5/2 and 9/2.
1601.22 10	5/2+	0.52 ps 17	J^{n} : 5/2, 7/2 from $\gamma(\theta)$ of 789 γ ; J=3/2, 5/2 from $\gamma(\theta)$ of 1227 γ .
1611.13 23	5/2-		J^{π} : 5/2 or 7/2 from $\gamma(\theta)$ and excitation functions of 1378 γ and 1611 γ .
1613.3 <i>3</i>	7/2-		J^{π} : 7/2 compatible with $\gamma(\theta)$ and excitation functions of 1381 γ and 1614 γ .
1666.13 <i>16</i>	$1/2^{(-)}$		J^{π} : 1/2 very likely from $\gamma(\theta)$ and excitation function of 1433 γ .
1725.8 3	$1/2^{-}, 3/2^{-}$		
1763.6 4	$1/2^{+}$		
1767.2 3	3/2-		
1891.3 <i>3</i>	3/2-		

 † From least-squares fit to Ey data.

[‡] From Adopted Levels; supporting arguments from this reaction are indicated. These are from 1978Pa15, unless indicated otherwise. [#] From DSA at E=4.2-4.8 MeV, 1978Pa15, except as noted.

					69	Ga(p,nγ) 1	978Pa15,1973	3Is02 (continued)	
							$\gamma(^{69}\text{Ge})$		
E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f J'_j	\int_{f}^{t} Mult.	@δ ^a	α^{e}	Branching ratio [†]	Comments
86.76 3	91	86.76	1/2-	0.0 5/2	2- E2 ^b		1.268	100	$\begin{aligned} &\alpha(K) \exp[=1.61 \ 11 \\ &ce(K)/(\gamma + ce) = 0.483 \ 4; \ ce(L)/(\gamma + ce) = 0.0655 \ 10; \\ &ce(M)/(\gamma + ce) = 0.00965 \ 16 \\ &ce(N)/(\gamma + ce) = 0.000473 \ 8 \\ &\alpha(K) = 1.096 \ 16; \ \alpha(L) = 0.1485 \ 21; \ \alpha(M) = 0.0219 \ 3 \\ &\alpha(N) = 0.001072 \ 15 \\ &\alpha(L +) \exp[=0.26 \ 2. \end{aligned}$
141.30 <i>10</i>	2.0	373.94	3/2-	232.66 3/2	2- [M1]		0.0315	2.0 4	ce(K)/(γ+ce)=0.0272 4; ce(L)/(γ+ce)=0.00288 4; ce(M)/(γ+ce)=0.000431 6 ce(N)/(γ+ce)=2.80×10 ⁻⁵ 4 α (K)=0.0280 4; α (L)=0.00297 5; α (M)=0.000444 7 α (N)=2.88×10 ⁻⁵ 4 α (K)exp=0.016 2 I _γ : adopted gammas Iγ(141): Iγ(287)=4.6:100. α (L+)exp=0.0022 10. Mult.: mult is E1 based on α (K)exp. However, mult=M1 is required by the decay scheme. α (theory)=0.032(M1), 0.025(E1). Note that α (exp) is smaller than α (E1 theory).
145.93 5	41	232.66	3/2-	86.76 1/2	2 ⁻ M1+E	+0.19 7	0.034 5	31 1	$\begin{aligned} &\alpha(\mathbf{K}) \exp[=0.0233 \ 15 \\ & ce(\mathbf{K})/(\gamma + ce) = 0.029 \ 4; \ ce(\mathbf{L})/(\gamma + ce) = 0.0032 \ 5; \\ & ce(\mathbf{M})/(\gamma + ce) = 0.00047 \ 7 \\ & ce(\mathbf{N})/(\gamma + ce) = 3.0 \times 10^{-5} \ 4 \\ & \alpha(\mathbf{K}) = 0.030 \ 4; \ \alpha(\mathbf{L}) = 0.0033 \ 5; \ \alpha(\mathbf{M}) = 0.00049 \ 7 \\ & \alpha(\mathbf{N}) = 3.1 \times 10^{-5} \ 4 \\ & \alpha(\mathbf{L} +) \exp[=0.00247 \ 251. \ 69 \end{aligned}$
232.66 3	76	232.66	3/2-	0.0 5/2	2 ⁻ M1+E	82 ^b +0.27 4	0.0103 5		α (K)exp=0.0101 8 α (K)=0.0092 5; α (L)=0.00097 5; α (M)=0.000145 7 α (N)=9.3×10 ⁻⁶ 5 α (L+)exp=0.00116 14.
255.7 5		1465.98	9/2+	1210.11 7/2	2+			92	
287.18 3	100	373.94	3/2-	86.76 1/2	2- M1+E	32 ^b +0.11 I	0.00529	73 1	$\begin{aligned} &\alpha(\text{K}) \exp = 0.0044 \ 3 \\ &\text{ce}(\text{K}) / (\gamma + \text{ce}) = 0.00470 \ 7; \ \text{ce}(\text{L}) / (\gamma + \text{ce}) = 0.000490 \ 8; \\ &\text{ce}(\text{M}) / (\gamma + \text{ce}) = 7.32 \times 10^{-5} \ 11 \\ &\text{ce}(\text{N}) / (\gamma + \text{ce}) = 4.78 \times 10^{-6} \ 7 \\ &\alpha(\text{K}) = 0.00472 \ 7; \ \alpha(\text{L}) = 0.000493 \ 8; \ \alpha(\text{M}) = 7.36 \times 10^{-5} \\ &11 \\ &\alpha(\text{N}) = 4.80 \times 10^{-6} \ 7 \\ &\alpha(\text{L} +) \exp = 0.00060 \ 9. \end{aligned}$

Ν

						⁶⁹ Ga(p,n	γ) 1978	Pa15,1973Is02 (co	ontinued)	
							γ(⁶⁹ Ge	e) (continued)		
E_{γ} ‡	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult.@	δ^{a}	α ^e	Branching ratio [†]	Comments
373.93 3	36	373.94	3/2-	0.0	5/2-	M1+E2 ^b	-0.17 9	0.00283 13	25 1	$\begin{aligned} \alpha(K) \exp = 0.0026 \ 4 \\ ce(K)/(\gamma + ce) = 0.00252 \ 11; \\ ce(L)/(\gamma + ce) = 0.000261 \ 12; \\ ce(M)/(\gamma + ce) = 3.90 \times 10^{-5} \ 18 \\ ce(N)/(\gamma + ce) = 2.55 \times 10^{-6} \ 11 \\ \alpha(K) = 0.00253 \ 11; \ \alpha(L) = 0.000262 \ 12; \\ \alpha(M) = 3.92 \times 10^{-5} \ 18 \end{aligned}$
391.0 ^g		1601.22	5/2+	1210.11	7/2+					$\alpha(N)=2.56\times10^{-6}$ <i>II</i> E _y : Given in decay scheme of 1978Pa15 but not in their Table.
397.9 <i>fg</i>	≈0.6 ^{<i>fc</i>}	1210.11	7/2+	812.17	5/2+				98 2	E_{γ} : Given in decay scheme of 1978Pa15 but not in their Table.
397.94 ^{<i>f</i>} 3	88 ^f	397.94	9/2+	0.0	5/2-	M2 ^b		0.00874	100	$\begin{aligned} &\alpha(\text{K}) \exp = 0.0067 \ 5 \\ &\text{ce}(\text{K}) / (\gamma + \text{ce}) = 0.00770 \ 11; \\ &\text{ce}(\text{L}) / (\gamma + \text{ce}) = 0.000832 \ 12; \\ &\text{ce}(\text{M}) / (\gamma + \text{ce}) = 0.0001246 \ 18 \\ &\text{ce}(\text{N}) / (\gamma + \text{ce}) = 8.08 \times 10^{-6} \ 12 \\ &\alpha(\text{K}) = 0.00777 \ 11; \ \alpha(\text{L}) = 0.000839 \ 12; \\ &\alpha(\text{M}) = 0.0001257 \ 18 \\ &\alpha(\text{N}) = 8.15 \times 10^{-6} \ 12 \\ &\alpha(\text{L} +) \exp = 0.00090 \ 12. \end{aligned}$
414.24 3	15	812.17	5/2+	397.94	9/2+	E2(+M3) ^b	+0.03 3	0.00431 9	18 <i>1</i>	$\alpha(K)\exp=0.0044 \ 8$ $ce(K)/(\gamma+ce)=0.00382 \ 8;$ $ce(L)/(\gamma+ce)=0.000405 \ 9;$ $ce(M)/(\gamma+ce)=6.03\times10^{-5} \ 13$ $ce(N)/(\gamma+ce)=3.80\times10^{-6} \ 8$ $\alpha(K)=0.00384 \ 8; \ \alpha(L)=0.000407 \ 9;$ $\alpha(M)=6.06\times10^{-5} \ 13$ $\alpha(M)=3.82\times10^{-6} \ 8$
438.25 7		812.17	5/2+	373.94	3/2-	(E1+M2)	-0.02 2	9.83×10 ⁻⁴ 16	22 1	$ce(K)/(\gamma+ce)=0.000878 \ 14;$ $ce(L)/(\gamma+ce)=8.97\times10^{-5} \ 15;$ $ce(M)/(\gamma+ce)=8.67\times10^{-5} \ 21$ $ce(N)/(\gamma+ce)=8.67\times10^{-7} \ 14$ $\alpha(K)=0.000879 \ 14; \ \alpha(L)=8.98\times10^{-5} \ 15;$ $\alpha(M)=1.338\times10^{-5} \ 21$ $\alpha(N)=8.68\times10^{-7} \ 14$ $I_{\gamma}: Seen by \ 1973Is02 \ but \ unresolved from impurity line.$
463.9 <i>6</i> 545.50 <i>20</i>	1.6	862.01 1478.73	7/2 ⁻ 7/2 ⁻	397.94 933.14	9/2 ⁺ 5/2 ⁻	(M1+E2)		0.0015 4	1.3 6 11 2	$ce(K)/(\gamma+ce)=0.0013 3;$ $ce(L)/(\gamma+ce)=0.00014 4;$

ω

						⁶⁹ Ga((p,n γ) 1	978Pa15,1973	3Is02 (continued)	
							<u>γ(</u>	⁶⁹ Ge) (continu	ued)	
E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult.@	δ^{a}	α ^e	Branching ratio [†]	Comments
×553.25.10										$ce(M)/(\gamma+ce)=2.0\times10^{-5} 5$ $ce(N)/(\gamma+ce)=1.3\times10^{-6} 3$ $\alpha(K)=0.0013 3; \ \alpha(L)=0.00014 4;$ $\alpha(M)=2.0\times10^{-5} 5$ $\alpha(N)=1.3\times10^{-6} 3$ $\delta: +0.05 5 \text{ for } J(1479)=7/2.$
559.14 4	6.9	933.14	5/2-	373.94	3/2-	M1+E2 ^{&}		0.0014 3	16.2 6	ce(K)/(γ +ce)=0.0012 3; ce(L)/(γ +ce)=0.00013 3; ce(M)/(γ +ce)=1.9×10 ⁻⁵ 5 ce(N)/(γ +ce)=1.2×10 ⁻⁶ 3 α (K)=0.0012 3; α (L)=0.00013 3; α (M)=1.9×10 ⁻⁵ 5 α (N)=1.2×10 ⁻⁶ 3 δ ; -0.35 10 or +1.4 4.
579.4 <i>3</i> 620.42 <i>10</i> 620.98 <i>18</i>		812.17 1432.60 994.89	5/2 ⁺ 3/2 ⁺ 1/2 ⁻	232.66 812.17 373.94	3/2 ⁻ 5/2 ⁺ 3/2 ⁻	D+Q (M1)	-0.6 4	8.56×10 ⁻⁴	2.0 5 74 2 25 1	I _y : I _y =18 for unresolved 620.98+620.42 γ 's. ce(K)/(γ +ce)=0.000765 11; ce(L)/(γ +ce)=7.84×10 ⁻⁵ 11; ce(M)/(γ +ce)=1.171×10 ⁻⁵ 17 ce(N)/(γ +ce)=7.71×10 ⁻⁷ 11 α (K)=0.000765 11; α (L)=7.84×10 ⁻⁵ 11; α (M)=1.172×10 ⁻⁵ 17 α (N)=7.72×10 ⁻⁷ 11
629.38 7		862.01	7/2-	232.66	3/2-	E2(+M3) ^{&}	+0.0 1	0.00118 6	4.3 4	
653.7 <i>3</i>		1465.98	9/2+	812.17	5/2+	E2 ^{&}		1.06×10 ⁻³	6 2	$ce(K)/(\gamma+ce)=0.000948 \ I4;ce(L)/(\gamma+ce)=9.85\times10^{-5} \ I4;ce(M)/(\gamma+ce)=1.469\times10^{-5} \ 21ce(N)/(\gamma+ce)=9.47\times10^{-7} \ I4\alpha(K)=0.000949 \ I4; \ \alpha(L)=9.86\times10^{-5} \ I4;\alpha(M)=1.471\times10^{-5} \ 21\alpha(N)=9.48\times10^{-7} \ I4$
^x 692.9 2 700.67 10	2.1	933.14	5/2-	232.66	3/2-				4.5 4	

 $_{32}^{69}\text{Ge}_{37}$ -4

						⁶⁹ Ga(p,	n γ) 197	3Pa15,1973Is02 (continued)	
							γ(⁶⁹ C	e) (continued)		
E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	E _f	\mathbf{J}_{f}^{π}	Mult.@	δ^{a}	α ^e	Branching ratio [†]	Comments
^x 709.8 2 762.22 3	2.6 13	994.89	1/2-	232.66	3/2-	(M1)		5.48×10 ⁻⁴	69 <i>1</i>	ce(K)/(γ +ce)=0.000490 7; ce(L)/(γ +ce)=5.00×10 ⁻⁵ 7; ce(M)/(γ +ce)=7.47×10 ⁻⁶ 11 ce(N)/(γ +ce)=4.93×10 ⁻⁷ 7 α (K)=0.000490 7; α (L)=5.01×10 ⁻⁵ 7; α (M)=7.48×10 ⁻⁶ 11 α (N)-4.93×10 ⁻⁷ 7
778.62 12	5.2 ^d	1590.78	7/2+	812.17	5/2+	M1+E2&	+0.48 6	5.49×10 ⁻⁴ 10	76 3	ce(K)/(γ +ce)=0.000491 9; ce(L)/(γ +ce)=5.02×10 ⁻⁵ 9; ce(M)/(γ +ce)=7.50×10 ⁻⁶ 13 ce(N)/(γ +ce)=4.93×10 ⁻⁷ 9 α (K)=0.000491 9; α (L)=5.03×10 ⁻⁵ 9; α (M)=7.51×10 ⁻⁶ 13 α (N)=4.93×10 ⁻⁷ 9 δ : large solution ruled out by (HI xn γ)
789.03 11		1601.22	5/2+	812.17	5/2+	M1+E2&		0.00057 7	55 2	ce(K)/(γ +ce)=0.00051 6; ce(L)/(γ +ce)=5.3×10 ⁻⁵ 7; ce(M)/(γ +ce)=7.9×10 ⁻⁶ 10 ce(N)/(γ +ce)=5.1×10 ⁻⁷ 6 α (K)=0.00051 6; α (L)=5.3×10 ⁻⁵ 7; α (M)=7.9×10 ⁻⁶ 10 α (N)=5.1×10 ⁻⁷ 6 δ ; +0.36 13 or +0.8 +4-2.
812.16 ^{<i>f</i>} 3	62 ^{fc}	812.17	5/2+	0.0	5/2-	(E1+M2)	-0.13 3	2.48×10 ⁻⁴ 9	58 2	ce(K)/(γ +ce)=0.000222 8; ce(L)/(γ +ce)=2.26×10 ⁻⁵ 9; ce(M)/(γ +ce)=3.37×10 ⁻⁶ 13 ce(N)/(γ +ce)=2.21×10 ⁻⁷ 8 α (K)=0.000222 8; α (L)=2.26×10 ⁻⁵ 9; α (M)=3.37×10 ⁻⁶ 13 α (N)=2.21×10 ⁻⁷ 8
812.16 ^{<i>f</i>} 10 821.75 3	12 ^{fc} 19.5	1210.11 1195.71	7/2 ⁺ 5/2 ⁻	397.94 373.94	9/2 ⁺ 3/2 ⁻	D+Q M1+E2 ^{&}		0.00052 6	67 1	$δ: -0.33 I0 \text{ or } -2.2 5.$ $ce(K)/(γ+ce)=0.00046 5;$ $ce(L)/(γ+ce)=4.8×10^{-5} 6;$ $ce(M)/(γ+ce)=7.1×10^{-6} 8$ $ce(N)/(γ+ce)=4.7×10^{-7} 5$ $α(K)=0.00047 5; α(L)=4.8×10^{-5} 6;$ $α(M)=7.1×10^{-6} 8$ $α(N)=4.7×10^{-7} 5$ $δ: -0.50 5 \text{ or } -1.1 I.$

S

					⁶⁹ Ga(p,nγ)	1978Pa15,1	973Is02 (contin	ued)	
						$\gamma(^{69}\text{Ge})$ (cont	tinued)		
E_{γ} ‡	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	δ^{a}	α^{e}	Branching ratio [†]	Comments
846.43 8	_	933.14	5/2-	86.76 1/2-	E2(+M3)&	+0.05 10	0.00054 4	18.7 9	$\begin{array}{c} {\rm ce}({\rm K})/(\gamma+{\rm ce}){=}0.00048 \ 4;\\ {\rm ce}({\rm L})/(\gamma+{\rm ce}){=}4.9{\times}10^{-5} \ 4;\\ {\rm ce}({\rm M})/(\gamma+{\rm ce}){=}7.4{\times}10^{-6} \ 6\\ {\rm ce}({\rm N})/(\gamma+{\rm ce}){=}4.8{\times}10^{-7} \ 4\\ \alpha({\rm K}){=}0.00048 \ 4; \ \alpha({\rm L}){=}4.9{\times}10^{-5} \ 4;\\ \alpha({\rm M}){=}7.4{\times}10^{-6} \ 6\\ \alpha({\rm N}){=}4.8{\times}10^{-7} \ 4 \end{array}$
862.00 <i>3</i>	23	862.01	7/2-	0.0 5/2-	M1+E2 ^{&}	+2.4 3	4.96×10 ⁻⁴ 8	94.8 8	ce(K)/(γ +ce)=0.000443 7; ce(L)/(γ +ce)=4.55×10 ⁻⁵ 7; ce(M)/(γ +ce)=6.79×10 ⁻⁶ 11 ce(N)/(γ +ce)=4.43×10 ⁻⁷ 7 α (K)=0.000443 7; α (L)=4.55×10 ⁻⁵ 7; α (M)=6.79×10 ⁻⁶ 11 α (N)=4.43×10 ⁻⁷ 7
904.45 5 ×012 75 20	5.7	1278.36	1/2-,3/2-	373.94 3/2-				33 2	
927.18 6	5.4	1159.89	3/2-	232.66 3/2-	(M1+E2)	-0.6 +3-24	0.00038 4	14 1	ce(K)/(γ +ce)=0.00034 4; ce(L)/(γ +ce)=3.5×10 ⁻⁵ 4; ce(M)/(γ +ce)=5.2×10 ⁻⁶ 6 ce(N)/(γ +ce)=3.4×10 ⁻⁷ 4 α (K)=0.00034 4; α (L)=3.5×10 ⁻⁵ 4; α (M)=5.2×10 ⁻⁶ 6 α (N)=3.4×10 ⁻⁷ 4
933.13 <i>3</i>	27	933.14	5/2-	0.0 5/2-	M1+E2 ^{&}		0.00039 3	60.6 9	ce(K)/(γ +ce)=0.00035 3; ce(L)/(γ +ce)=3.5×10 ⁻⁵ 3; ce(M)/(γ +ce)=5.3×10 ⁻⁶ 5 ce(N)/(γ +ce)=3.5×10 ⁻⁷ 3 α (K)=0.00035 3; α (L)=3.5×10 ⁻⁵ 3; α (M)=5.3×10 ⁻⁶ 5 α (N)=3.5×10 ⁻⁷ 3 δ : +0.21 8 or +1.06 20.
952.45 7	6.1	1350.39	11/2+	397.94 9/2+	M1+E2 ^{&}	+0.55 3	3.55×10 ⁻⁴	100	ce(K)/(γ +ce)=0.000318 5; ce(L)/(γ +ce)=3.24×10 ⁻⁵ 5; ce(M)/(γ +ce)=4.84×10 ⁻⁶ 7 ce(N)/(γ +ce)=3.19×10 ⁻⁷ 5 α (K)=0.000318 5; α (L)=3.24×10 ⁻⁵ 5; α (M)=4.84×10 ⁻⁶ 7 α (N)=3.19×10 ⁻⁷ 5
963.08 11	8.1	1195.71	5/2-	232.66 3/2-	M1+E2 ^{&}		0.00036 3	8.0 5	ce(K)/(γ +ce)=0.000323 24;

From ENSDF

 $^{69}_{32}{
m Ge}_{37}$ -6

					⁶⁹ Ga(p,nγ)	1978Pa1	5,1973Is02 (co	ntinued)	
						$\gamma(^{69}\text{Ge})$ (continued)		
${\rm E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	δ^{a}	α^{e}	Branching ratio [†]	Comments
×001.2.2	2 %								$\begin{array}{c} \text{ce(L)}/(\gamma+\text{ce})=3.3\times10^{-5} \ 3;\\ \text{ce(M)}/(\gamma+\text{ce})=4.9\times10^{-6} \ 4\\ \text{ce(N)}/(\gamma+\text{ce})=3.23\times10^{-7} \ 23\\ \alpha(\text{K})=0.000323 \ 24; \ \alpha(\text{L})=3.3\times10^{-5} \ 3;\\ \alpha(\text{M})=4.9\times10^{-6} \ 4\\ \alpha(\text{N})=3.23\times10^{-7} \ 23\\ \delta: \ -0.27 \ 15 \ \text{or} \ -1.6 \ +5-10. \end{array}$
991.2 2 994.87 <i>1</i> 7	2.8	994.89	1/2-	0.0 5/2-	E2 ^{&}		3.58×10 ⁻⁴	6 1	$ce(K)/(\gamma+ce)=0.000320 5;ce(L)/(\gamma+ce)=3.28\times10^{-5} 5;ce(M)/(\gamma+ce)=4.89\times10^{-6} 7ce(N)/(\gamma+ce)=3.20\times10^{-7} 5\alpha(K)=0.000320 5; \alpha(L)=3.28\times10^{-5} 5;\alpha(M)=4.90\times10^{-6} 7\alpha(N)=3.20\times10^{-7} 5$
x1014.5 3 1041.6 3	3.6	1414.78	5/2-	373.94 3/2-				19 2	
1045.50 20 1058.65 13	3.6 1.8	1278.36	$\frac{1/2}{3/2^+}$, $\frac{3}{2}$	$232.00 \ 3/2$ $373.94 \ 3/2^{-}$				32 2 17 2	
1068.05 8	10.3	1465.98	9/2+	397.94 9/2 ⁺	M1+E2&	-1.43 10	2.93×10 ⁻⁴ 5	85 3	ce(K)/(γ +ce)=0.000262 4; ce(L)/(γ +ce)=2.67×10 ⁻⁵ 4; ce(M)/(γ +ce)=3.99×10 ⁻⁶ 6 ce(N)/(γ +ce)=2.62×10 ⁻⁷ 4 α (K)=0.000262 4; α (L)=2.67×10 ⁻⁵ 4; α (M)=3.99×10 ⁻⁶ 6 CE (γ)
1073.11 4	19.6	1159.89	3/2-	86.76 1/2-	M1+E2 ^{&}	+0.31 6	2.71×10 ⁻⁴	68 <i>I</i>	$\alpha(N)=2.62\times10^{-7} 4$ $ce(K)/(\gamma+ce)=0.000243 4;$ $ce(L)/(\gamma+ce)=2.47\times10^{-5} 4;$ $ce(M)/(\gamma+ce)=3.69\times10^{-6} 6$ $ce(N)/(\gamma+ce)=2.43\times10^{-7} 4$ $\alpha(K)=0.000243 4; \alpha(L)=2.47\times10^{-5} 4;$ $\alpha(M)=3.69\times10^{-6} 6$ $\alpha(N)=2.43\times10^{-7} 4$
1105.20 20		1478.73	7/2-	373.94 3/2-	E2&		2.81×10 ⁻⁴	29 2	$ce(K)/(\gamma+ce)=0.000251 \ 4;$ $ce(L)/(\gamma+ce)=2.56\times10^{-5} \ 4;$ $ce(M)/(\gamma+ce)=2.50\times10^{-7} \ 4;$ $\alpha(IPF)/T_{1/2}=9.18\times10^{-7} \ 14$ $\alpha(K)=0.000251 \ 4; \ \alpha(L)=2.56\times10^{-5} \ 4;$ $\alpha(M)=3.83\times10^{-6} \ 6$ $\alpha(N)=2.50\times10^{-7} \ 4; \ \alpha(IPF)=9.18\times10^{-7} \ 14$ $\delta: \ \delta(O/Q)=-0.05 \ 6.$

					69 Ga(p,n γ)	1978Pa1	5,1973Is02 (con	tinued)	
						$\gamma(^{69}\text{Ge})$ (c	ontinued)		
${\rm E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	δ^{a}	α^{e}	Branching ratio [†]	Comments
1159.94 6	5.5	1159.89	3/2-	0.0 5/2-	(M1)		2.32×10 ⁻⁴	18 1	$ce(K)/(\gamma+ce)=0.000205 3;ce(L)/(\gamma+ce)=2.09\times10^{-5} 3;ce(M)/(\gamma+ce)=3.11\times10^{-6} 5ce(N)/(\gamma+ce)=2.06\times10^{-7} 3;\alpha(IPF)/T_{1/2}=2.81\times10^{-6} 4$
1165.30 <i>13</i>	4.2	1539.26	3/2-	373.94 3/2-	(M1)		2.31×10 ⁻⁴	30 2	$\alpha(K)=0.000205 \ 3; \ \alpha(L)=2.09\times10^{-5} \ 3; \alpha(M)=3.12\times10^{-6} \ 5 \alpha(N)=2.06\times10^{-7} \ 3; \ \alpha(IPF)=2.81\times10^{-6} \ 4 ce(K)/(\gamma+ce)=0.000204 \ 3; ce(L)/(\gamma+ce)=2.07\times10^{-5} \ 3; ce(M)/(\gamma+ce)=3.09\times10^{-6} \ 5 $
									$ce(N)/(\gamma+ce)=2.04\times10^{-7} 3;\alpha(IPF)/T_{1/2}=3.17\times10^{-6} 5\alpha(K)=0.000204 3; \alpha(L)=2.07\times10^{-5} 3;\alpha(M)=3.09\times10^{-6} 5\alpha(N)=2.04\times10^{-7} 3; \alpha(IPF)=3.17\times10^{-6} 5$
1182.10 <i>11</i>	3.4	1414.78	5/2-	232.66 3/2-	M1+E2 ^{&}	+0.49 10	2.30×10 ⁻⁴	15 <i>I</i>	ce(K)/(γ +ce)=0.000201 3; ce(L)/(γ +ce)=2.05×10 ⁻⁵ 4; ce(M)/(γ +ce)=3.05×10 ⁻⁶ 5 ce(N)/(γ +ce)=2.02×10 ⁻⁷ 3; α (IPF)/T _{1/2} =4.82×10 ⁻⁶ 13 α (K)=0.000201 3; α (L)=2.05×10 ⁻⁵ 4; α (M)=3.05×10 ⁻⁶ 5
1191.54 10		1278.36	1/23/2-	86.76 1/2-				19 2	$\alpha(N)=2.02\times10^{-7} 3; \alpha(IPF)=4.82\times10^{-6} 13$
1192.7 <i>3</i> 1195.78 <i>10</i> 1199.7 <i>5</i> 1210.0 <i>5</i>	7.0 ^d 5.1 ≈0.6 ^c	1590.78 1195.71 1432.60 1210.11	7/2 ⁺ 5/2 ⁻ 3/2 ⁺ 7/2 ⁺	397.94 9/2 ⁺ 0.0 5/2 ⁻ 232.66 3/2 ⁻ 0.0 5/2 ⁻	D+Q			24 2 25 1 6 1 2 2	δ: -0.1 4 or -2.0 +10-37.
1220.12 5	10.2	1306.88	3/2-	86.76 1/2-	M1+E2&	+0.3 1	2.18×10 ⁻⁴ 4	49 1	ce(K)/(γ +ce)=0.000187 3; ce(L)/(γ +ce)=1.90×10 ⁻⁵ 3; ce(M)/(γ +ce)=2.84×10 ⁻⁶ 5 ce(N)/(γ +ce)=1.87×10 ⁻⁷ 3; α (IPF)/T _{1/2} =8.85×10 ⁻⁶ 22 α (K)=0.000187 3; α (L)=1.90×10 ⁻⁵ 3; α (M)=2.84×10 ⁻⁶ 5 α (M)=1.87×10 ⁻⁷ 3; α (IPE)=8.85×10 ⁻⁶ 22
1227.4 <i>3</i> 1237.0 <i>6</i>		1601.22 1611.13	5/2 ⁺ 5/2 ⁻	373.94 3/2 ⁻ 373.94 3/2 ⁻	D(+Q)	+0.09 10		19 2 9 2	E_{γ} : uncertainty given as 6 keV in 1978Pa15 is assumed by the evaluator to be a misprint.

 ∞

 $_{32}^{69}\text{Ge}_{37}$ -8

Т

						⁶⁹ Ga(p,nγ)	1978Pa15	,1973Is02 (cont	inued)	
							$\gamma(^{69}\text{Ge})$ (co	ontinued)		
${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#}$	E _i (level)	\mathbf{J}_i^π	E_{f}	\mathbf{J}_f^{π}	Mult.@	δ^{a}	α^{e}	Branching ratio [†]	Comments
1239.0 6		1613.3	7/2-	373.94 3	3/2-				7 2	E_{γ} : uncertainty given as 6 keV in 1978Pa15 is assumed by the evaluator to be a misprint.
1245.9 4	2.2	1478.73	7/2-	232.66 3	8/2-				72	
1278.23 25 1306.85 5	2.3 13.2	1278.36	1/2 , <i>3</i> /2 3/2 ⁻	0.0 5, 0.0 5,	5/2 5/2 ⁻	(M1(+E2))	+0.0 1	2.04×10 ⁻⁴	16 2 51 <i>1</i>	ce(K)/(γ +ce)=0.0001623 23; ce(L)/(γ +ce)=1.646×10 ⁻⁵ 23; ce(M)/(γ +ce)=2.46×10 ⁻⁶ 4 ce(N)/(γ +ce)=1.625×10 ⁻⁷ 23; α (IPF)/T _{1/2} =2.22×10 ⁻⁵ 4 α (K)=0.0001623 23; α (L)=1.646×10 ⁻⁵ 23; α (M)=2.46×10 ⁻⁶ 4
X1226 9 2	1.6									α (N)=1.625×10 ⁻⁷ 23; α (IPF)=2.22×10 ⁻⁵ 4
1346.1 6	1.0	1432.60	$3/2^{+}$	86.76 1	/2-				31	
1351.7 <i>5</i> <i>x</i> 1368.8 <i>3</i>	2.2 3.9	1725.8	1/2-,3/2-	373.94 3	3/2-				23 2	
1378.4 <i>3</i>	5.9	1611.13	5/2-	232.66 3	3/2-	M1+E2	+1.3 2	2.13×10 ⁻⁴ 4	61 3	ce(K)/(γ +ce)=0.0001518 23; ce(L)/(γ +ce)=1.543×10 ⁻⁵ 23; ce(M)/(γ +ce)=2.30×10 ⁻⁶ 4 ce(N)/(γ +ce)=1.517×10 ⁻⁷ 23; α (IPF)/T _{1/2} =4.31×10 ⁻⁵ 11 α (K)=0.0001519 23; α (L)=1.543×10 ⁻⁵ 23; α (M)=2.30×10 ⁻⁶ 4 α (N)=1.517×10 ⁻⁷ 23; α (IPF)=4.31×10 ⁻⁵ 11 Mult.: J=5/2 is adopted.
1380.7 <i>4</i> 1389.5 <i>5</i>	3.9	1613.3 1763.6	$7/2^{-}$ 1/2 ⁺	232.66 3 373.94 3	$3/2^{-}$ $3/2^{-}$	Q+O	-0.03 4		48 <i>3</i> 52 <i>4</i>	
1414.73 6	15.1	1414.78	5/2-	0.0 5	5/2-	M1+E2&	-0.65 10	2.06×10 ⁻⁴ 4	65 2	$\begin{array}{l} {\rm ce(K)}/(\gamma+{\rm ce})=0.0001415\ 21;\\ {\rm ce(L)}/(\gamma+{\rm ce})=1.435\times10^{-5}\ 21;\\ {\rm ce(M)}/(\gamma+{\rm ce})=2.14\times10^{-6}\ 4\\ {\rm ce(N)}/(\gamma+{\rm ce})=1.414\times10^{-7}\ 21;\\ \alpha({\rm IPF})/{\rm T}_{1/2}=4.80\times10^{-5}\ 11\\ \alpha({\rm K})=0.0001415\ 21;\ \alpha({\rm L})=1.436\times10^{-5}\ 21;\\ \alpha({\rm M})=2.14\times10^{-6}\ 4\\ \alpha({\rm N})=1.415\times10^{-7}\ 21;\ \alpha({\rm IPF})=4.80\times10^{-5}\ 11\\ \end{array}$
1430.28 10	7.8	1430.30	9/2-	0.0 5	5/2-	E2(+M3) ^{&}	-0.02 3	2.23×10 ⁻⁴	100	ce(K)/(γ +ce)=0.0001438 22; ce(L)/(γ +ce)=1.463×10 ⁻⁵ 22; ce(M)/(γ +ce)=2.18×10 ⁻⁶ 4 ce(N)/(γ +ce)=1.435×10 ⁻⁷ 22;

 $_{32}^{69}\text{Ge}_{37}$ -9

						⁶⁹ Ga(p,n	γ) 1978Pa1	5,1973Is02 (cont	tinued)	
							$\gamma(^{69}\text{Ge})$ (continued)		
${\rm E}_{\gamma}^{\ddagger}$	Ιγ [#]	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	δ^{a}	α^{e}	Branching ratio [†]	Comments
1433.45 15	5.2	1666.13	1/2 ⁽⁻⁾	232.66	3/2-				100	$\frac{\alpha(\text{IPF})/\text{T}_{1/2}=6.21\times10^{-5} \ 9}{\alpha(\text{K})=0.0001439 \ 22; \ \alpha(\text{L})=1.463\times10^{-5} \ 22; \ \alpha(\text{M})=2.18\times10^{-6} \ 4}{\alpha(\text{N})=1.435\times10^{-7} \ 22; \ \alpha(\text{IPF})=6.21\times10^{-5} \ 9}$ E _y : this γ is reported in 1973Is02 as
1452.46 <i>13</i>	6.1	1539.26	3/2-	86.76	1/2-	M1+E2&	-0.45 25	2.05×10 ⁻⁴ 5	49 2	ce(K)/(γ +ce)=0.0001335 22; ce(L)/(γ +ce)=1.353×10 ⁻⁵ 23; ce(M)/(γ +ce)=2.02×10 ⁻⁶ 4 ce(N)/(γ +ce)=1.335×10 ⁻⁷ 22; α (IPF)/T _{1/2} =5.6×10 ⁻⁵ 3 α (K)=0.0001335 22; α (L)=1.353×10 ⁻⁵ 23; α (M)=2.02×10 ⁻⁶ 4 α (N)=1 335×10 ⁻⁷ 22; α (IPF)=5.6×10 ⁻⁵ 3
1478.65 9	9.6	1478.73	7/2-	0.0	5/2-	(M1+E2)		2.16×10 ⁻⁴ 13	52 2	$\begin{aligned} & \alpha(N) = 1.55 \times 10^{-5} 22, \ \alpha(III +) = 5.5 \times 10^{-5} 3, \\ & ce(K)/(\gamma + ce) = 0.000131 4; \\ & ce(L)/(\gamma + ce) = 1.33 \times 10^{-5} 4; \\ & ce(M)/(\gamma + ce) = 1.39 \times 10^{-6} 6 \\ & ce(N)/(\gamma + ce) = 1.31 \times 10^{-7} 4; \\ & \alpha(IPF)/T_{1/2} = 6.9 \times 10^{-5} 9 \\ & \alpha(K) = 0.000131 4; \ \alpha(L) = 1.33 \times 10^{-5} 4; \\ & \alpha(M) = 1.99 \times 10^{-6} 6 \\ & \alpha(N) = 1.31 \times 10^{-7} 4; \ \alpha(IPF) = 7.0 \times 10^{-5} 9 \\ & \delta: + 0.05 2 \text{ or } + 4.8 \text{ & for } J(1479) = 7/2. \end{aligned}$
x1488.2 3 1534.6 4 1539.5 3 1601.2 3	1.6 2.1 1.4 2.4	1767.2 1539.26 1601.22	3/2 ⁻ 3/2 ⁻ 5/2 ⁺	232.66 0.0 0.0	3/2 ⁻ 5/2 ⁻ 5/2 ⁻	D+O	-0.06 6		39 <i>3</i> 21 2 26 2	
1611.3 4	4.2	1611.13	5/2-	0.0	5/2-	(M1+E2)	+1.7 +3-8	2.50×10 ⁻⁴ 10	30 3	ce(K)/(γ +ce)=0.0001120 21; ce(L)/(γ +ce)=1.136×10 ⁻⁵ 22; ce(M)/(γ +ce)=1.69×10 ⁻⁶ 4 ce(N)/(γ +ce)=1.117×10 ⁻⁷ 20; α (IPF)/T _{1/2} =0.000124 9 α (K)=0.0001120 21; α (L)=1.136×10 ⁻⁵ 22; α (M)=1.70×10 ⁻⁶ 4 α (N)=1.117×10 ⁻⁷ 20; α (IPF)=0.000124 9 Mult: J=5/2 is adopted.
1613.5 5 1639.0 5 ×1650.5 3	5.9 3.8 3.1	1613.3 1725.8	7/2 ⁻ 1/2 ⁻ ,3/2 ⁻	0.0 86.76	5/2 ⁻ 1/2 ⁻	D+Q	-0.05 3		45 <i>3</i> 57 <i>3</i>	
1658.2 <i>5</i> 1677.0 <i>7</i>	1.2 1.5	1891.3 1763.6	3/2 ⁻ 1/2 ⁺	232.66 86.76	3/2 ⁻ 1/2 ⁻				42 <i>3</i> 48 <i>4</i>	

From ENSDF

Т

E _γ ‡	$I_{\gamma}^{\#}$	E_i (level)	\mathbf{J}_i^π	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Branching ratio
1680.1 7	3.6	1767.2	3/2-	86.76 1/2-	23 3
1726.0 5		1725.8	$1/2^{-}, 3/2^{-}$	0.0 5/2-	20 2
1767.3 <i>5</i>	3.0	1767.2	$3/2^{-}$	0.0 5/2-	38 <i>3</i>
^x 1779.2 3	7.8				
1804.5 5	2.1	1891.3	$3/2^{-}$	86.76 1/2-	46 <i>3</i>
1891.8 <i>5</i>	2.1	1891.3	3/2-	0.0 5/2-	12 3

[†] Branching ratio from 1978Pa15.

[‡] Placed γ 's are from 1978Pa15, unplaced γ 's are from 1973Is02.

[#] Relative intensity, mostly from 1973Is02 measured at E(p)=5.0 MeV, supplemented by branching ratio data from 1978Pa15. These data are in reasonable agreement with those of 1973Is02.

^(e) From $\gamma(\theta)$ and J^{π} of initial and final levels (1978Pa15), except where indicated otherwise.

[&] From $\gamma(\theta)$ and RUL.

11

^{*a*} From $\gamma(\theta)$ (1978Pa15).

^b From $\alpha(\exp)$ data of 1973Is02. The authors normalized their data their data to $\alpha_k(\exp)=0.082$ for the 174.9 γ E2 transition in ⁷¹Ge. Renormalization to $\alpha_k(\text{theory})=0.0811$ from 2008Ki07 would not affect the conclusions.

^c 1973Is02 report I γ =74 for the doubly placed 812 γ . From branching in Adopted Gammas, one expects I γ =62 for placement from the 812 level, leaving I γ =12 for placement from the 1210 level. From Adopted Gammas, the 397.9 and 1210 γ 's have a branching of \approx 10 % that of the 812 γ .

^d The 778.62 γ and 1192.7 γ are unplaced by 1973Is02. The authors' ratio of I $\gamma(1192\gamma)/I\gamma(779\gamma)=1.35$ is inconsistent with 0.32 5 from 1978Pa15 and 0.52 10 from (α ,n γ).

^e Additional information 1.

^f Multiply placed with intensity suitably divided.

^g Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{69}_{32}{
m Ge}_{37}$

 $_{32}^{69}\text{Ge}_{37}$ -13

From ENSDF

 $_{32}^{69}\text{Ge}_{37}$ -13