

$^{69}\text{Zn} \beta^-$ decay (13.749 h) 1969Zo01,1970Ra08

Type	Author	History
Full Evaluation	C. D. Nesaraja	Citation
		Literature Cutoff Date
		1-Apr-2023

Parent: ^{69}Zn : E=438.636 17; $J^\pi=9/2^+$; $T_{1/2}=13.749$ h 14; $Q(\beta^-)=909.9$ 14; $\% \beta^-$ decay=0.033 3

$^{69}\text{Zn}-\text{Q}(\beta^-)$: From 2021Wa16.

$^{69}\text{Zn}-\% \beta^-$ decay: from $I\gamma(438.6)$ in IT decay and $I\gamma(574.3)$ in β^- decay (1970Ra08).

1970Ra08: ZnO targets, enriched with ^{68}Zn were irradiated at the Oak Ridge Research Reactor. Gamma rays were detected using GeLi and NaI(Tl) detectors. Measured $E\gamma$, $I\gamma$, γ coincidence.

1969Zo01: ^{69}Zn isomer was produced by bombarding ZnO targets with neutrons from the MIT cyclotron, which was followed by chemical separation. Gammas were detected with Ge(Li) and NaI detectors. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ coincidences, and ^{69}Ge $T_{1/2}$.

1963Sc27: ^{69}Ge was produced by bombarding natural gallium oxide with deuterons from the Indiana University cyclotron. Gammas were detected with a NaI crystal. Measured $E\gamma$, $I\gamma$, $E\beta^+$, $I\beta^+$ and $\gamma\gamma$ and $\beta^+\gamma$ coincidences.

 ^{69}Ga Levels

$E(\text{level})^\dagger$	$J^\pi \ddagger$	$T_{1/2} \ddagger$
0	$3/2^-$	stable
574.3 2	$5/2^-$	11.7 ps +22-17

† From measured $E\gamma$.

‡ From Adopted Levels.

 β^- radiations

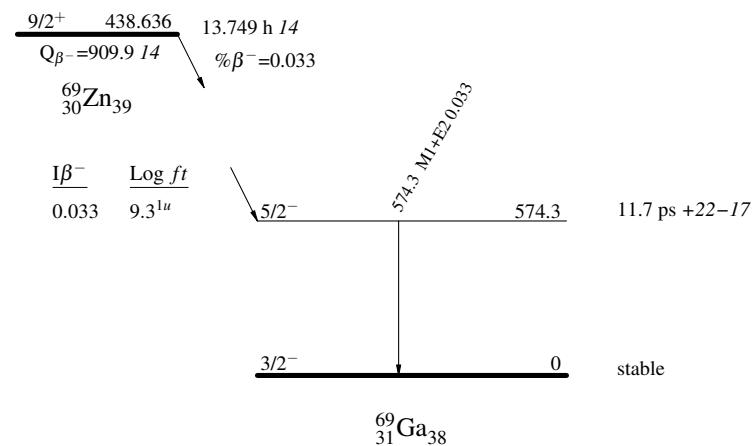
av $E\beta$: Additional information 1.

$E(\text{decay})$	$E(\text{level})$	$I\beta^- \dagger$	$\text{Log } ft$	Comments
(774.2 14)	574.3	100	9.3 ^{1u}	av $E\beta=290.3$ 7

† For absolute intensity per 100 decays, multiply by 0.00033 3.

 $\gamma(^{69}\text{Ga})$

$I\gamma$ normalization: zero g.s. feeding assumed on the basis of large spin change.


$E\gamma \dagger$	$I\gamma @$	$E_i(\text{level})$	J_i^π	E_f	J_f^π	Mult. \ddagger	$\delta \ddagger$	$\alpha \#$	Comments
574.3 2	100	574.3	$5/2^-$	0	$3/2^-$	M1+E2	-0.06 1	9.13×10^{-4} 13	$\alpha(K)=0.000817$ 11; $\alpha(L)=8.30 \times 10^{-5}$ 12; $\alpha(M)=1.214 \times 10^{-5}$ 17 $\alpha(N)=6.57 \times 10^{-7}$ 9 $\% I\gamma=0.0330$ 30

† From 1970Ra08.

‡ From Adopted Gammas.

$\#$ Additional information 2.

$@$ For absolute intensity per 100 decays, multiply by 0.00033 3.

$^{69}\text{Zn} \beta^-$ decay (13.749 h) 1969Zo01,1970Ra08Decay SchemeIntensities: $I_{(\gamma+ce)}$ per 100 parent decays