		Type	А	uthor	History Citation	Literature Cutoff Date
		Full Evalua	ation C. D.	Nesaraja	NDS 115, 1 (2014)	31-Jul-2013
Q(β ⁻)=-2227.1	5; S(1	n)=10313.4 <i>19</i> ; S(p)=	=6609.9 <i>15</i> ; ($Q(\alpha) = -448$	9.3 <i>14</i> 2012Wa38	
					⁶⁹ Ga Levels	
				Cross Re	ference (XREF) Flags	
		A ${}^{69}\text{Zn} \beta^- \text{deca}$ B ${}^{69}\text{Zn} \beta^- \text{deca}$ C ${}^{69}\text{Ge} \varepsilon \text{decay}$ D ${}^{66}\text{Zn}(\alpha, p\gamma), ($ E ${}^{68}\text{Zn}(p, \gamma)$ F ${}^{64}\text{Ni}({}^7\text{Li}, 2n\gamma)$	y (56.4 min) y (13.756 h) (a,p)	G 71 H 68 I 69 J 69 K C L 69	$Ga(p,t)$ M $Zn(^{3}He,d)$ N $Ga(\gamma,\gamma')$ O $Ga(n,n'\gamma)$ Poulomb excitation $Ga(p,p'\gamma)$	⁶⁸ Zn(p,p'), (p,p), (p,n), IAR ⁶⁸ Zn(d,n) ⁷⁰ Ge(d, ³ He), (pol d, ³ He) ⁶⁹ Ga(α,α'γ)
E(level) [†]	J^{π}	T _{1/2} ^{<i>c</i>}	XRI	EF		Comments
0.0	3/2-	stable	ABCDEFGHI	IJKLMNOP	μ =+2.01659 5 (1954 Q=+0.171 <i>11</i> (2010) J ^{π} : from collinear la spectroscopy (197) μ ,Q: from resonance 2011StZZ.	Wa37) Ch16) ser spectroscopy (2010Ch16) and optical 6Fu06), π from L(p,t)=0. cell laser spectroscopy. Others compiled by
318.706 <i>21</i>	1/2-	<70 ps	A CDE GHI	IJKL NO	B(E2) \uparrow =0.0068 4 J ^{π} : from $\gamma(\theta)$ in ⁶⁹ G B(E2): from Coul. e T _{1/2} : by pulsed bear ps from ⁶⁹ Ga(p,p'	a(n,n' γ), π from L(p,t)=2. x. n delayed coincidences in Coul. ex. Others:<97 γ):<330 ps from B(E2) and δ <0.6.
574.220 22	5/2-	1.7 ps 7	BCDEFGHI	IJKL NOP	B(E2)↑=0.00072 ⁴ I XREF: G(?). B(E2): from Coul. e J ^{π} : from $\gamma(\theta)$ in ⁶⁹ G T _{1/2} : from DSA in ⁶ ⁶⁹ Ga(γ, γ'); 6.8 ps	x. $a(p,p'\gamma), \pi$ from L(d,n)=3. ${}^{59}Ga(\alpha, \alpha'\gamma)$. Others: 12.8 ps +17–13 from +44–31 from B(E2).
872.147 22	3/2-	0.250 ^{&} ps 21	A CDE GHI	EJKL NO	B(E2) [↑] =0.0068 <i>17</i> B(E2): from Coul. e J ^{π} : from $\gamma(\theta)$ in ⁶⁹ G T _{1/2} : Others: 0.22 p ⁶⁹ Ga(γ, γ'); 0.27 p	x. $a(n,n'\gamma), \pi$ from L(p,t)=0. s 5 from Coul. ex.; 0.28 ps 5 from s + 32-17 from B(E2).
1028.59 4	1/2-	1.2 ^{&} ps 10	DE GHI	IJKL NOP	B(E2) \uparrow =0.0029 8 B(E2): from Coul. e J ^{π} : from $\gamma(\theta)$ and γ π from L(p,t)=2. T _{1/2} : Inconsistent w 0.53 ps from (γ, γ'	x. yields in ⁶⁹ Ga(p,p' γ) and yield in (n,n' γ), ith <0.11 ps from (α ,p γ) but consistent with >).
1107.04 4	5/2-	0.222 ^{&} ps 21	CDEFG 1	IJKL OP	B(E2) [↑] =0.031 <i>3</i> J ^π : from $\gamma(\theta)$ in ⁶⁹ G B(E2): from Coul. e T _{1/2} : Others: 0.24 p ⁶⁹ Ga(p,p' γ), 0.22 from (γ,γ'); 0.15 p from B(E2).	a(p,p' γ), π from L(p,t)=2. x. s 7 from ⁶⁹ Ga($\alpha, \alpha' \gamma$); 0.23 ps 3 from ps 3 from ⁶⁴ Ni(⁷ Li,2n γ); 0.240 ps +19–18 ps 4 from DSA in Coulomb ex.; 0.15 ps 3
1134 <i>15</i> 1336.69 <i>3</i>	7/2-	1.18 ^{<i>a</i>} ps 6	CDEFGHI	N LJKL NOP	B(E2)↑=0.033 5	

Continued on next page (footnotes at end of table)

⁶⁹Ga Levels (continued)

E(level) [†]	J^{π}	T _{1/2} ^{<i>c</i>}	XREF		Comments
					J^{π} : from $\gamma(\theta)$ in ⁶⁹ Ga(p,p' γ), π from L(p,t)=2 1.4 7.
					B(E2): from Coul. ex. T _{1/2} : Others: 1.4 ps 7 from 69 Ga(p,p' γ): 1.04 ps +14-35
					from ${}^{64}\text{Ni}({}^{7}\text{Li},2n\gamma)$; 0.76 ps 13 from DSA in Coul.
1 400 07 4	7/0-	1.00			ex.; 0.76 ps $+14-10$ from B(E2).
1488.07 4	1/2-	1.9^{47} ps $+10-5$	CDEFG IJ L	. NO	J [*] : from $\gamma(\theta)$ in ⁶² Ga(p,p' γ), and π from L(p,t)=2. E(level): possible doublet in ⁶⁸ Zn(d p)
1525.76 4	3/2-	>0.55 [#] ps	C E GHIJ L		J^{π} : from $\gamma(\theta)$ and γ yields in 69 Ga(n,n' γ), π from
	-,-	F.			L(p,t)=0.
1723.71 4	5/2-	0.15 ^b ps +12-6	C E GHIJ	NO	J^{π} : from $\gamma(\theta)$ in 69 Ga(n,n' γ), and π from L(d,n)=3.
					$T_{1/2}$: others: 0.40 ps +18-10 from ⁶⁹ Ga(γ, γ'), \geq 0.97 ps
1764 78 4	9/2-	$0.83^{@}$ ps 14	DEEC 1		ITOIL DSAM III $\sim Zii(p, \gamma)$. I^{π_1} from $\gamma(\theta)$ and γ yields in 69 Ga(n n' γ) and
1704.70 4)/2	0.05 ps 14	DEIG		$^{66}Zn(\alpha,p\gamma); \gamma \text{ to } 5/2^$
					$T_{1/2}$: other: 0.38 ps +69-19 from DSAM in ⁶⁹ Ga(n,n' γ).
1891.64 6	3/2-	22 fs 3	C E GHIJ	0	J^{π} : from $\gamma(\theta)$ in ${}^{68}Zn(p,\gamma)$, and π from L(p,t)=2.
					$T_{1/2}$: weighted average of 20 fs 3 from ${}^{69}\text{Ga}(\gamma,\gamma')$, 20 fs 10 from DSAM in ${}^{69}\text{Ga}(\eta,\eta'\alpha)$ and 20 fs 6 from
					DSAM in 68 Zn(p, γ).
1924.25 <i>4</i>	7/2-	≥0.62 [#] ps	CEGIJ	0	J^{π} : from $\gamma(\theta)$ in ⁶⁸ Zn(p, γ), and π from L(d, ³ He)=3.
1972.37 5	9/2 ⁽⁺⁾	$\geq 2.8^{\textcircled{0}}$ ps	DEF H J	NO	J^{π} : from $\gamma(\theta)$ in 69 Ga(n,n' γ), and π from
		. #			$L(d,^{3}He)=4+1$ at 1970 7 (doublet).
1973.08 6	$(1/2)^{-}$	97 [#] fs 28	E GHIJ		XREF: I(?). M_{1} from $r_{1}(0)$ in $\frac{68}{2}$ $T_{2}(n, x) = from I_{1}(n, t) = 2 \text{ of } 1076 \text{ 2}$
					F(level): unresolved doublet at 1971 15 in 68 Zn(3 He.d).
2007.66 5	$3/2^{(-)}, 5/2^{(-)}$	0.35 [#] ps +21-10	ЕНЈ		J^{π} : from $\gamma(\theta)$ in ⁶⁸ Zn(p, γ), L(³ He,d)=(1) gives π =(-1)
					and prefers $J=3/2$.
2022.01.0	5/2-	0.175^{a} ps 10	C E CUIL		$T_{1/2}$: others: 0.20 ps +11-6 from ⁶⁹ Ga(n,n' γ).
2023.91 9	5/2	0.175 ps 19	C E GHIJ		T _{1/2} : Others: 0.19 ps +8-5 from DSAM in ${}^{68}Zn(p,\gamma)$
					and 0.173 ps +13–11 in ${}^{69}\text{Ga}(\gamma,\gamma')$.
2045.24 8	5/2-	111 [#] fs <i>14</i>	C E GHIJ		XREF: H(?).
					J^{π} : from $\gamma(\theta)$ in ${}^{68}Zn(p,\gamma)$, π from L(p,t)=2.
					$T_{1/2}$: other: 29 is 12 from DSAM in 69 Ga(n,n' γ), 40 is 7 in 69 Ga($\gamma \gamma'$)
2197 4	f		hI		/ m Ou(<i>j</i> , <i>j</i>).
2219.29 19	f	$\geq 0.21^{\#}$ ps	Eh		
2250.99 10	(1/2,3/2)-	$0.10^{\#} \text{ ps} + 5 - 3$	EGJ	0	J ^{π} : 1/2 preferentially from $\gamma(\theta)$ in ⁶⁹ Ga(n,n' γ); (3/2)
					from $\gamma(\theta)$ in ⁶⁸ Zn(p, γ); π from L(p,t)=2 If 3/2 ⁻ , one
					would expect and L=0 component, nowever the isotropic $\gamma(\theta)$ rules out $3/2$.
					$T_{1/2}$: other: 0.033 ps 15 from DSAM in ⁶⁹ Ga(n,n' γ).
2319.55 20	$(5/2^+, 7/2^+)$	1.04 [@] ps 21	EFG		J^{π} : from $\gamma(\theta)$ and yield ratio in ⁶⁴ Ni(⁷ Li,2n\gamma); π from
					L(p,t)=(3).
2353 30 24	5/2	$>0.17^{\#}$ ps	FCT		$I_{1/2}$: other: ≥ 0.21 ps from DSAM in $\sim Zn(p,\gamma)$. $I_{1/2}$: from $\alpha(\theta)$ in ${}^{68}Zn(p,\alpha)$
2423.29 7	5/2	≥0.17 ps	iJ		\mathbf{J} . from $\gamma(0)$ in $\Sigma n(\mathbf{p}, \mathbf{\gamma})$.
2428.68 21	5/2-,7/2-	≥1.7 [@] ps	FG i	0	J ^{π} : from $\gamma(\theta)$ and yield ratio in ⁶⁴ Ni(⁷ Li,2n γ); π from
2158 81 11	7/2(-)	$0.15 \text{ ns} \pm 10.6$	ЕСТ	0	$L(\mathbf{p},\mathbf{t})=4.$
2730.07 11	112.1	0.15 ps +19-0	EGI	U	$T_{1/2}$: from DSAM in ${}^{68}Zn(p,\gamma)$.

Continued on next page (footnotes at end of table)

⁶⁹Ga Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{c}$	XREF		Comments
2485.70 10	5/2+	70 [#] fs +50-30	E GHI		J^{π} : from $\gamma(\theta)$ in 68 Zn(p, γ), π from L(3 He,d)=2.
2529.81 9	$(3/2)^{-}$	76 [#] fs 21	E GH		J ^{π} : from $\gamma(\theta)$ in ⁶⁸ Zn(p, γ), π from L(³ He,d)=1.
2560 3	$(7/2)^{-}$			0	J^{π} : from L(pol d, ³ He)=3.
2564.3 8			E hI	NO	E(level): possible doublet. $J=(1/2,3/2)$ favored by γ decay modes in ⁶⁹ Ga(γ,γ') for possible level at 2565 4; $J^{\pi}=7/2^+,9/2^+$ from L(³ He,d)=4 for level at 2564 30. $J^{\pi}=5/2^-,7/2^-$ from L(d, ³ He)=3 for level at 2560 3.
2572.54 21	9/2+		EF H	n	J^{π} : 5/2,9/2 from $\gamma(\theta)$ and yield ratio in ${}^{64}\text{Ni}({}^{7}\text{Li},2n\gamma)$; $J^{\pi}=7/2^{+},9/2^{+}$ from L(${}^{3}\text{He},d$)=4 for level at 2564 30.
2573 5	3/2-		GΙ	n	J^{π} : from L(p,t)=0.
2600 5	-		G		$J^{\pi}: L(p,t)=4.$
2614 5	-		G		$J^{\pi}: L(p,t)=2.$
2660.3 18	3/2-	Ø	D GHI	N	J^{π} : from $\gamma(\theta)$ in 69 Ga(γ, γ'), π from L(p,t)=2.
2668.28 6	11/2	≥1.7 [™] ps	F		J^{π} : J=9/2,11/2 from $\gamma(\theta)$ and yield ratio in ⁶⁴ Ni(⁷ Li,2n γ); γ from (15/2) makes J=9/2 unlikely.
2680 <i>3</i>	5/2-,7/2-	Ø		0	J^{π} : L(d, ⁵ He)=3.
2717.99 5	13/2(+)	$\geq 1.4^{\textcircled{0}}$ ps	D FG J		J^{π} : from $\gamma(\theta)$ in ⁶⁴ Ni(⁷ Li,2n γ); π from probable E2 to $9/2^{(+)}$.
2749 <i>5</i> 2766 <i>3</i>	1/2-,3/2-		GH G I		J^{π} : L(p,t)=2, L(³ He,d)=1. XREF: G(?).
2789 30	$1/2^{-}$		Н		J^{π} : L(³ He,d)=1.
2795.0 5	$(7/2)^{-}$		FGHI		J^{π} : L(p,t)=2; γ to $9/2^{(+)}$.
2847 <i>3</i> 2860 <i>5</i>	+		G I I		J^{π} : L(p,t)=3.
2932 15	$3/2^+, 5/2^+$		Н	N	J^{π} : L(d,n)=2, L(³ He,d)=2.
2965 <i>3</i> 2978.8 22 2995 5	_		G I G I G		J^{π} : L(p,t)=4. J^{π} : L(p,t)=2.
3052.3	3/2 7/2		GT		I^{π} from $\gamma(\theta)$ in 69 Ga($\gamma \gamma'$)
3077 4	5/2+		HI	N	J^{π} : from $\gamma(\theta)$ in 69 Ga(γ, γ'): π from L(³ He.d)=2 at 3089 30.
3098 5	_		G		J^{π} : L(p,t)=4.
3118.39 17	11/2-	0.24 [@] ps 5	FG		J ^{π} : from $\gamma(\theta)$ and yield ratio in ⁶⁴ Ni(⁷ Li,2n γ); π from M1+E2 to 9/2 ⁻ .
3135 5			G		
3192 5	$(^{-})$		G		$J^{n}: L(p,t)=(2).$
3203 4	(3/2)		G I CHI		$J^{*}: L(p,t)=(0).$
3240.5	-		G		J^{π} : L(p,t)=4.
3242.44 7	13/2-	0.5 [@] ps 3	F		J^{π} : $\gamma(\theta)$ give J=9/2 or 13/2 and γ yields give 11/2 or 13/2 in 64 Ni(7 Li 2no): π from E2 to $0/2^{-1}$
3283 6	3/2-		GΙ		J^{π} : L(p,t)=0(+2).
3299 5	_		G		J^{π} : L(p,t)=2.
3319 6	7/2		GHI		J ^{π} : from $\gamma(\theta)$ in ⁶⁹ Ga(γ, γ'); π =- from L(p,t)=2 disagrees with π =+ from L(³ He,d)=2.
3328 5	-		G		J^{π} : L(p,t)=2.
3358 30	3/2+,5/2+		Н		J^{π} : L(³ He,d)=2.
3371 5	3/2-	0	G		J^{π} : L(p,t)=0(+2).
3389.33 10	$(15/2^+)$	1.9 [@] ps <i>10</i>	F		J^{π} : $\gamma(\theta)$ consistent with J=11/2,13/2 or 15/2 and yields suggest J=15/2 or 17/2 in ⁶⁴ Ni(⁷ Li,2n γ); M1+E2 transition to 13/2 rules out 17/2.
3490 5	-		G	N	J^{π} : L(p,t)=4.
3542.76 10	11/2 ⁽⁺⁾	0.42 [@] ps 7	F		J ^π : $\gamma(\theta)$ gives J=11/2 or 15/2 and yields give J<13/2 in 64 Ni(7 Li,2nγ); π from M1+E2 to 13/2 ⁽⁺⁾ .

Continued on next page (footnotes at end of table)

⁶⁹Ga Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{c}$	XREF	7	Comments
3578 5	_		G		J^{π} : L(p,t)=2.
3633.95 7	17/2 ⁽⁺⁾	1.4 [@] ps 7	F		J ^{π} : $\gamma(\theta)$ gives J=17/2 or 13/2 and yields give J≥17/2 in ⁶⁴ Ni(⁷ Li,2n\gamma); π from E2 to 13/2 ⁽⁺⁾ .
3655 <i>5</i> 3693 <i>5</i>	_		G G		J^{π} : L(p,t)=2.
3722.30 8	(11/2,13/2)	1.6 [@] ps 3	F		J^{π} : $\gamma(\theta)$ consistent with J=11/2, 13/2 and 15/2; yields consistent with J=9/2,11/2 or 13/2 in ⁶⁴ Ni(⁷ Li,2n\gamma).
3757 5	3/2-	_	GH		J^{π} : L(p,t)=0.
3786.07 <i>12</i> 3795 <i>5</i>	(15/2) (⁻)	1.04 [@] ps 21	F G		J^{π} : from $\gamma(\theta)$ and yield in 64 Ni(7 Li,2n γ). J^{π} : L(p,t)=(2).
3803 <i>30</i>	1/2+		Н		J^{π} : from L(³ He,d)=0.
3881 5	_		G		J^{π} : L(p,t)=2.
3928 <i>5</i>	(_)		G		J^{π} : L(p,t)=(2).
3950 5			G		
3966 5	Q		G		VDEE, II(2)
3993 3	- <i>g</i>		GH		$\mathbf{AKEF:} \mathbf{H}(2)$
4032 3	0		GI		$I^{\pi} \cdot I(nt) = 2$
4078.20 10	(15/2)-	0.55 [@] ps 10	F		J^{π} : $\gamma(\theta)$ consistent with J=11/2, 13/2 or 15/2; yield ratios favor J=15/2 or 17/2 in ⁶⁴ Ni(⁷ Li,2n\gamma); π from M1+E2 to 13/2 ⁻ .
4106 5			G		
4115 30	$1/2^{+}$		Н		J^{π} : L(³ He,d)=0.
4152 30	$1/2^{+}$		Н		J^{π} : L(³ He,d)=0.
4160 5	1 /a +		G		-π - A Ν - 0
4190 30	1/2+		Н		J^{π} : L(³ He,d)=0.
4191 5	2/2-		G		I^{π} , I (p, t) = 0
4231 3	$\frac{3}{2}$		ч ч		J : L(p,t) = 0. $I^{\pi} : L({}^{3}H_{P} d) = (0)$
4291 5	(1/2)		G		$J : L(\Pi C, u) - (0).$
4321 30	$(1/2^+)$		Н		J^{π} : L(³ He,d)=(0).
4430 30			Н		
4528.10 <i>14</i>	(17/2,19/2)	≥2.8 [@] ps	F		J ^{π} : $\gamma(\theta)$ give J=11/2 to 19/2; yield ratios give J≥17/2 in ⁶⁴ Ni(⁷ Li.2n γ).
4533 30	$(1/2^+)$		Н		J^{π} : L(³ He.d)=(0).
4830 30	1/2+		Н		J^{π} : L(³ He,d)=0.
6874.2 16	1/2	<10 fs	I		J^{π} : from $\gamma(\theta)$ in 69 Ga(γ, γ').
7306.9 7	5/2+	4.3 fs +11-7	I		T _{1/2} : from Γ in ⁶⁹ Ga(γ, γ') with the assumption J=1/2. J ^π : from $\gamma(\theta)$ and π from linear polarization measurement in (γ, γ').
9813.6 [‡] 6		1.5×10^{-2} as 5	Е	М	$T_{1/2}$: from Γ in 09 Ga (γ, γ') with J=5/2.
10247.8 [‡] 7			Е		
10251 7 8			F		
10256 8 7			E E		
10230.8* 7	$(3/2^{-})^{e}$	0.1×10^{-1} as	Ľ	м	
10597	(3/2)	1.8×10^{-1} as		M	
10621	3/2 - d	1.5×10^{-2} as		M	
10655	(5/2+)d	1.5×10^{-2} as		M	
10686	$(5/2^{+})^{e}$	1.3×10^{-1} as		M	
10698	$(5/2^+)^e$	1.0×10^{-1} as		M	
10717	$(5/2^+)^e$	1.8×10^{-1} as		M	

⁶⁹Ga Levels (continued)

E(level) [†]	J^{π}	$T_{1/2}^{c}$	XREF	E(level) [†]	\mathbf{J}^{π}	T _{1/2} ^{<i>c</i>}	XREF
11404	5/2+ <i>d</i>	1.5×10^{-2} as	M	12178	5/2+ <i>d</i>	1.5×10^{-2} as	М
11483	1/2+ <i>d</i>	7.6×10^{-3} as	М	12331	5/2+ d	1.5×10^{-2} as	М
11601	$(1/2^{-})^{d}$	1.5×10^{-2} as	М	12434	1/2+ d	9.1×10^{-2} as	M
12028	$1/2^{+d}$	1.1×10^{-2} as	М				

[†] From least squares fit to $E\gamma$ data and from reaction data.

[‡] From E(level) difference.

From DSAM in 68 Zn(p, γ). ^(a) From DSAM in 64 Ni(7 Li,2n γ). ^(b) From DSAM in 69 Ga(p,p' γ).

^{*a*} From ⁶⁹Ga(γ, γ'). ^{*b*} From DSAM in ⁶⁹Ga(n,n' γ).

^c From total Γ in ⁶⁸Zn(p,p') for E>9800 or as indicated otherwise.

^{*d*} From $\sigma(E)$ and $p\gamma\gamma(\theta)$ in ⁶⁸Zn(p,p').

^{*e*} From Breit-Wigner analysis of data in 68 Zn(p,p').

^{*f*} Possible $J^{\pi} = 1/2^+$ level from L(³He,d)=0 at 2220 30. $J^{\pi}(2219) = (1/2, 3/2)$ from $\gamma(\theta)$ in (p, γ).

 g L(³He,d)=1 at 4021 30.

	Adopted Levels, Gammas (continued)													
							γ (⁶⁹ Ga	a)						
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	\mathbf{E}_{f}	J_f^{π}	Mult.	δ	α^{jn}	Comments					
318.706	1/2-	318.71 3	100	0.0	3/2-	M1+E2 ^g	<0.24	0.00374 18	$ α(K)=0.00334 \ 16; \ α(L)=0.000344 \ 17; \ α(M)=5.03\times10^{-5} 24 α(N)=2.70\times10^{-6} \ 12 B(M1)(W.u.)>0.0092 δ: from B(E2) in Coulomb excitation and T1/2; 0.53 \ 10 from α(exp) in 69Ge ε decay. B(E2)(W.u.)=8.1 5 from B(E2) in Coulomb excitation. $					
574.220	$5/2^{-}$	255.4 5	0.19 6	318.706	$1/2^{-}$	щ								
		574.20 3	100 8	0.0	3/2-	M1+E2#	-0.06 [@] 1	9.13×10 ⁻⁴	B(M1)(W.u.)=0.07 3; B(E2)(W.u.)=1.1 7 α (K)=0.000817 12; α (L)=8.30×10 ⁻⁵ 12; α (M)=1.215×10 ⁻⁵ 17 α (N)=6.58×10 ⁻⁷ 10 δ : 0.030 9 from B(E2) in Coulomb excitation and T _{1/2} . B(E2)(W.u.)=0.29 5 from B(E2) in Coulomb excitation.					
872.147	3/2-	298.3 5 553.43 <i>4</i>	0.21 <i>6</i> 5.8 <i>4</i>	574.220 318.706	5/2 ⁻ 1/2 ⁻	(M1(+E2))	+0.00 ^c 3	9.90×10 ⁻⁴	$\alpha(\mathbf{K})=0.000886 \ 13; \ \alpha(\mathbf{L})=9.00\times10^{-5} \ 13; \alpha(\mathbf{M})=1.317\times10^{-5} \ 19 \alpha(\mathbf{N})=7.13\times10^{-7} \ 10 \mathbf{B}(\mathbf{M})(\mathbf{W} \mathbf{u})=(0.027 \ 4)$					
		872.14 3	100 8	0.0	3/2-	M1+E2 ^e	-0.13 ^f 4	3.71×10 ⁻⁴	B(M1)(W.u.)= $(0.027 \text{ fr})^{-1}$ B(M1)(W.u.)= $0.118 \ 16$; B(E2)(W.u.)= $4.0 \ 25$ $\alpha(\text{K})=0.000332 \ 5$; $\alpha(\text{L})=3.35\times10^{-5} \ 5$; $\alpha(\text{M})=4.91\times10^{-6} \ 7$ $\alpha(\text{N})=2.66\times10^{-7} \ 4$ δ : 0.13 4 from B(E2) in Coulomb excitation and T _{1/2} . B(E2)(W.u.)= $4.1 \ 10 \text{ from B}(\text{E2})$ in Coulomb excitation.					
1028.59	$1/2^{-}$	454.4 10	≤4.3	574.220	5/2-	d								
		709.84 5	100 5	318.706	1/2-	(M1) ^d		5.73×10 ⁻⁴	B(M1)(W.u.)=0.030 +158-15 α (K)=0.000513 8; α (L)=5.19×10 ⁻⁵ 8; α (M)=7.59×10 ⁻⁶ 11 α (N)=4.12×10 ⁻⁷ 6					
		1028.63 6	61 4	0.0	3/2-	M1+E2	0.79	2.78×10 ⁻⁴	$ α(K)=4.12\times10^{-6} 0 $ $ α(K)=0.000249 4; α(L)=2.52\times10^{-5} 4; α(M)=3.68\times10^{-6} 6 $ $ α(N)=1.99\times10^{-7} 3 $ B(M1)(W.u.)=0.004 4; B(E2)(W.u.)=3 3 Mult.: from γ(θ) in ⁶⁹ Ga(p,p'γ) and RUL. $ δ: 0.79 \text{ from B(E2) in Coulomb excitation and T}_{1/2}. $ B(E2)(W.u.)=3.4 10 from B(E2) in Coulomb excitation.					
1107.04	5/2-	234.90 6	1.02 8	872.147	3/2-	M1+E2 ^{<i>i</i>}	-0.12 6	0.0078 4	$\alpha(K)=0.0070 \ 4; \ \alpha(L)=0.00073 \ 4; \ \alpha(M)=0.000106 \ 6 \ \alpha(N)=5.7\times10^{-6} \ 3 \ B(M1)(W.u.)=0.072 \ 9; \ B(E2)(W.u.)=3.E+1 \ 3 \ \delta: From \ \gamma\gamma(\theta) \ (1975Pa22) \ with \ \delta(872\gamma) \ taken \ as \ -0.11.$					
		532.66 10	0.75 6	574.220	5/2-	(M1+E2) ^h		0.0014 4	$B(M1)(W.u.)=0.0023 \ 3; B(E2)(W.u.)=12.5 \ 15$					

 ${}^{69}_{31}{
m Ga}_{38}$ -6

Т

	Adopted Levels, Gammas (continued)												
						<u> </u>	(⁶⁹ Ga) (contin	ued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α^{jn}	Comments				
1107.04	5/2-	788.16 7 1107.01 6	0.95 8 100	318.706 0.0	1/2 ⁻ 3/2 ⁻	M1+E2 ^{<i>a</i>}	+0.32 ^b 2	2.30×10 ⁻⁴	$\begin{aligned} \alpha(\text{K}) = 0.0013 \ 4; \ \alpha(\text{L}) = 0.00013 \ 4; \ \alpha(\text{M}) = 1.9 \times 10^{-5} \ 5 \\ \alpha(\text{N}) = 1.02 \times 10^{-6} \ 25 \\ \delta: \ +0.00 \ 5 \ \text{or} \ -1.65 \ 20. \\ \text{I}_{\gamma}: \ \text{I}_{\gamma} = 2.0 \ 4 \ \text{in} \ (\text{n},\text{n}'\gamma). \\ \text{B}(\text{M1})(\text{W.u.}) = 0.062 \ 6; \ \text{B}(\text{E2})(\text{W.u.}) = 8.0 \ 12 \\ \alpha(\text{K}) = 0.000206 \ 3; \ \alpha(\text{L}) = 2.07 \times 10^{-5} \ 3; \ \alpha(\text{M}) = 3.03 \times 10^{-6} \end{aligned}$				
1336.69	7/2-	762.48 2	5.1 5	574.220	5/2-	M1+E2 ^a	-2.2 2	6.14×10 ⁻⁴ 10	5 α (N)=1.644×10 ⁻⁷ 24; α (IPF)=7.24×10 ⁻⁷ 11 δ: 0.40 5 from B(E2) in Coulomb excitation and T _{1/2} . B(E2)(W.u.)=12.3 12 from B(E2) in Coulomb excitation. α (K)=0.000549 9; α (L)=5.60×10 ⁻⁵ 9; α (M)=8.18×10 ⁻⁶ 13 α (N)=4.38×10 ⁻⁷ 7 P(M)(W, Q) = 0.00020 22 P(E2)(W, Q) 5 2				
		1336.72 6	100 8	0.0	3/2-	E2(+M3)	+0.00 [@] 2	2.05×10 ⁻⁴	B(M1)(W.1.)=0.00038 22; B(E2)(W.1.)=5 3 δ : preferred value by authors in (p, γ); -0.22 4 also possible. Others: -2.0 +3-6 or -0.68 +9-10 in ε decay; -1.5 5 or -0.42 +16-40 in (⁷ Li,2n γ). α (K)=0.0001511 22; α (L)=1.522×10 ⁻⁵ 22; α (M)=2.22×10 ⁻⁶ 4 α (N)=1.202×10 ⁻⁷ 17; α (IPF)=3.69×10 ⁻⁵ 6 B(E2)(W.1.)=(7 4)				
1488.07	7/2-	381.16 <i>16</i> 616.42 <i>9</i>	26 <i>15</i> 12 2	1107.04 872.147	5/2 ⁻ 3/2 ⁻	(M1(+E2)) ^{&}	-0.03 ^b 3	0.00233	Mult.: Q from $\gamma(\theta)$ in ⁶⁴ Ni(⁷ Li,2n γ); from RUL. B(E2)(W.u.)=9.8 <i>15</i> from B(E2) in Coulomb excitation. $\alpha(K)=0.00209 \ 3; \ \alpha(L)=0.000214 \ 3; \ \alpha(M)=3.13\times10^{-5} \ 5 \ \alpha(N)=1.687\times10^{-6} \ 25 \ B(M1)(W.u.)=(0.026 \ +18-26); \ B(E2)(W.u.)=(0.2 \ +6-2) \ E_{\gamma}$: This transition is not included in the least-squares fit for the excitation energies since the energy fit is				
		913.79 9	63 15	574.220	5/2-	M1+E2 ^e	-2.54 ^f 10	3.93×10 ⁻⁴	poor. The least-squares fit gives $E\gamma$ =616.01 4. $\alpha(K)$ =0.000352 5; $\alpha(L)$ =3.57×10 ⁻⁵ 5; $\alpha(M)$ =5.22×10 ⁻⁶ 8				
		1488.02 6	100 8	0.0	3/2-	E2(+M3)	+0.00@ 3	2.17×10 ⁻⁴	$\begin{aligned} &\alpha(\mathrm{N}) = 2.80 \times 10^{-7} \ 4 \\ &\mathrm{B}(\mathrm{M1})(\mathrm{W.u.}) = 0.0006 \ + 3 - 6; \ \mathrm{B}(\mathrm{E2})(\mathrm{W.u.}) = 7 \ + 4 - 6 \\ &\alpha(\mathrm{K}) = 0.0001210 \ 18; \ \alpha(\mathrm{L}) = 1.217 \times 10^{-5} \ 18; \\ &\alpha(\mathrm{M}) = 1.78 \times 10^{-6} \ 3 \\ &\alpha(\mathrm{N}) = 9.63 \times 10^{-8} \ 14; \ \alpha(\mathrm{IPF}) = 8.18 \times 10^{-5} \ 12 \\ &\mathrm{B}(\mathrm{E2})(\mathrm{W.u.}) = (1.1 \ + 5 - 10) \\ &\mathrm{Mult.:} \ \mathrm{Q} \ \mathrm{from} \ \gamma(\theta) \ \mathrm{in} \ ^{64}\mathrm{Ni}(^{7}\mathrm{Li}, 2n\gamma); \ \mathrm{E2} \ \mathrm{from} \ \mathrm{RUL}. \end{aligned}$				

 \neg

 $\gamma(^{69}$ Ga) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_{f}	\mathbf{J}_f^{π}	Mult.	δ	α^{jn}	Comments
1525.76	3/2-	418.51 6	18.4 <i>18</i>	1107.04	5/2-	(M1(+E2)) ^{&}	+0.05 ^b 7	0.00188 4	$\alpha(K)=0.00168 \ 4; \ \alpha(L)=0.000172 \ 4; \ \alpha(M)=2.51\times10^{-5} \ 5 \ \alpha(N)=1.356\times10^{-6} \ 25 \ B(M1)(Wu) < 0.0512; \ B(E2)(Wu) < 4.2?$
		951.54 9	10 4	574.220	5/2-	(M1(+E2))&	+0.3 ^b 3	3.13×10 ⁻⁴ 11	$\alpha(K)=0.000281 \ 10; \ \alpha(L)=2.83\times10^{-5} \ 11; \\ \alpha(M)=4.14\times10^{-6} \ 15 \\ \alpha(N)=2.25\times10^{-7} \ 8 \\ P(M1)(W,u) < 0.00252; \ P(E2)(W,u) < 0.042$
		1207.21 6	100 7	318.706	1/2-	(M1+E2) ^{&}	+0.14 ^b 2	1.99×10 ⁻⁴	$\alpha(K)=0.0001715\ 24;\ \alpha(L)=1.724\times10^{-5}\ 25;\alpha(M)=2.52\times10^{-6}\ 4\alpha(N)=1.371\times10^{-7}\ 20;\ \alpha(IPF)=7.09\times10^{-6}\ 10P(M1)(W,r.)<0.0112;\ P(F2)(W,r.)<0.202$
		1525.83 7	68 6	0.0	3/2-	(M1+E2) ^{&}	-0.38 ^b 7	2.00×10 ⁻⁴	$\alpha(K)=0.0001097 \ 16; \ \alpha(L)=1.101\times10^{-5} \ 16; \alpha(M)=1.609\times10^{-6} \ 23 \alpha(N)=8.75\times10^{-8} \ 13; \ \alpha(IPF)=7.76\times10^{-5} \ 14 P(M1)(W,r) \ c0.002(2) P(F2)(W,r) \ c0.422 $
1723.71	5/2-	616.7 2	21	1107.04	5/2-	(M1(+E2)) ^{&}	+0.05 ^b 25	0.00078 4	B(M1)(W.u.)<0.00507; B(E2)(W.u.)<0.457 $\alpha(K)=0.000703; \alpha(L)=7.1\times10^{-5}3; \alpha(M)=1.03\times10^{-5}5$ $\alpha(N)=5.61\times10^{-7}23$ B(M1)(W.u.)=(0.057+23-46); B(E2)(W.u.)=(1+6-1)
		851.31 9	92	872.147	3/2-				
		1149.46 7	66 6	574.220	5/2-	M1+E2 ^{<i>a</i>}	-0.46 ^b 10	2.17×10 ⁻⁴ 4	$\alpha(K)=0.000192 \ 3; \ \alpha(L)=1.94\times10^{-5} \ 3; \ \alpha(M)=2.83\times10^{-6} \ 5 \ \alpha(N)=1.536\times10^{-7} \ 24; \ \alpha(IPF)=2.37\times10^{-6} \ 7 \ B(M1)(W,u,)=0.023 \ +10-19; \ B(E2)(W,u,)=6 \ +3-5$
		1405.12 8	34 6	318.706	1/2-	E2(+M3)	-0.05 ^b 7	2.07×10 ⁻⁴ 5	$\alpha(K)=0.000137 \ 5; \ \alpha(L)=1.38\times10^{-5} \ 5; \alpha(M)=2.02\times10^{-6} \ 7 \alpha(N)=1.09\times10^{-7} \ 4; \ \alpha(IPF)=5.47\times10^{-5} \ 10 B(E2)(W.u.)=(6 + 3 - 5); \ B(M3)(W.u.)=(5.E+4 + 16 - 5) Mult : 0 from \alpha(4) in {}^{68}Zn(p q) E2 from BUI$
		1723.79 8	100 6	0.0	3/2-	M1+E2 ^{<i>a</i>}	-0.75 ^b 15	2.57×10 ⁻⁴ 6	$\alpha(K) = 8.82 \times 10^{-5} \ I3; \ \alpha(L) = 8.84 \times 10^{-6} \ I3; \alpha(M) = 1.292 \times 10^{-6} \ I9 \alpha(N) = 7.02 \times 10^{-8} \ I1; \ \alpha(IPF) = 0.000158 \ 4 B(M1)(W,u) = 0.008 \ +4-7; \ B(E2)(W,u) = 2.3 \ +11-20$
1764.78	9/2-	1190.55 <i>3</i>	100	574.220	5/2-	E2(+M3)	-0.02 [@] 3	2.24×10 ⁻⁴	$\alpha(K) = 0.000194 \ 3; \ \alpha(L) = 1.96 \times 10^{-5} \ 3; \alpha(M) = 2.87 \times 10^{-6} \ 5 \alpha(N) = 1.546 \times 10^{-7} \ 24; \ \alpha(IPF) = 7.32 \times 10^{-6} \ 11 B(E2)(W.u.) = (17 \ 3); \ B(M3)(W.u.) = (3.E+4 + 10-3) Mult.: Q from \gamma(\theta) in {}^{64}\text{Ni}({}^{7}\text{Li},2n\gamma); E2 from RUL.$
1891.64	3/2-	1317.1 <i>10</i> 1572.99 8	0.6 <i>3</i> 48 <i>4</i>	574.220 318.706	5/2 ⁻ 1/2 ⁻	(M1(+E2)) ^{&}	-0.09 ^b 9	2.06×10 ⁻⁴	$\alpha(K)=0.0001030 \ 15; \ \alpha(L)=1.032\times 10^{-5} \ 15;$

 ∞

						Adopted Lev	els, Gammas (continued)	
						γ ⁽⁶⁹	Ga) (continued	<u>l)</u>	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	δ	α^{jn}	Comments
1891.64	3/2-	1891.55 7	100 8	0.0	3/2-	M1+E2 ^{<i>a</i>}	-0.15 ^b 6	2.95×10 ⁻⁴	$\alpha(M)=1.509\times10^{-6} 22$ $\alpha(N)=8.21\times10^{-8} 12; \ \alpha(IPF)=9.08\times10^{-5} 14$ $B(M1)(W.u.)=(0.086 13); \ B(E2)(W.u.)=(0.4 + 9 - 4)$ $B(M1)(W.u.)=0.102 15; \ B(E2)(W.u.)=1.0 8$ $\alpha(K)=7.34\times10^{-5} 11; \ \alpha(L)=7.34\times10^{-6} 11;$
									$\alpha(M) = 1.073 \times 10^{-6} 15$ $\alpha(N) = 5.85 \times 10^{-8} 9; \alpha(IPF) = 0.000213 4$
1924.25	7/2-	587.64 8	69 7	1336.69	7/2-	(M1(+E2)) ^{&}	0.00 7	8.66×10 ⁻⁴	α(K)=0.000775 11; α(L)=7.87×10-5 12; α(M)=1.151×10-5 17 α(N)=6.23×10-7 9 B(M1)(W.u.)<0.042? δ: preferred value by authors in (p,γ); +1.1 I also possible. Others: -1.0 +1-2 or -0.025 75 in ε decay.
		816.9 10	8.4 8	1107.04	5/2-				1
		1052.10 4	100 8	872.147	3/2-	(E2) ^{&}		2.87×10 ⁻⁴	B(E2)(W.u.)<15 α (K)=0.000257 4; α (L)=2.60×10 ⁻⁵ 4; α (M)=3.80×10 ⁻⁶ 6 α (N)=2.04×10 ⁻⁷ 3
		1349.99 <i>5</i>	76 8	574.220	5/2-	(M1+E2) ^{&}	-2.6 4	2.02×10 ⁻⁴	$\alpha(K)=0.0001466\ 21;\ \alpha(L)=1.477\times10^{-5}\ 22;\ \alpha(M)=2.16\times10^{-6}\ 3$ $\alpha(N)=1.168\times10^{-7}\ 17;\ \alpha(IPF)=3.88\times10^{-5}\ 7$ B(M1)(W.u.)<0.00062?; B(E2)(W.u.)<2.9? δ : preferred value by authors in (p, γ); -0.15 5 also possible. Others: -6.5 +14-21 or -0.30 75 in ε decay.
		1923.8 2	35 <i>3</i>	0.0	3/2-				1
1972.37	9/2 ⁽⁺⁾	484.29 7	24 3	1488.07	7/2-	(E1(+M2)) [‡]	+0.00 [@] 2	6.98×10 ⁻⁴	$\alpha(K)=0.000625 \ 9; \ \alpha(L)=6.31\times10^{-5} \ 9; \ \alpha(M)=9.21\times10^{-6}$ I3 $\alpha(N)=4.93\times10^{-7} \ 7$ B(F1)(Wn)<0.000232
		635.71 5	100 7	1336.69	7/2-	(E1(+M2)) [‡]	-0.01 [@] 2	3.63×10 ⁻⁴ 6	$\alpha(K)=0.000325 5; \alpha(L)=3.28\times10^{-5} 5; \alpha(M)=4.79\times10^{-6} 7$
		1397.94 <i>14</i>	7.1 17	574.220	5/2-	(M2(+E3)) [‡]	-0.06 [@] 12	3.01×10 ⁻⁴	$\begin{array}{l} \alpha(\mathrm{N}) = 2.57 \times 10^{-7} \ 4 \\ \mathrm{B(E1)(W.u.)} < 0.00043?; \ \mathrm{B(M2)(W.u.)} < 2.4? \\ \alpha(\mathrm{K}) = 0.000258 \ 4; \ \alpha(\mathrm{L}) = 2.61 \times 10^{-5} \ 4; \ \alpha(\mathrm{M}) = 3.82 \times 10^{-6} \\ 6 \end{array}$
									α (N)=2.08×10 ⁻⁷ 3; α (IPF)=1.279×10 ⁻⁵ 23 B(M2)(W.u.)<6.8?; B(E3)(W.u.)<1.4×10 ² ?
1973.08	(1/2)-	1654.18 ^m 9 1973.19 ^m 8	83 ¹ 10 100 ¹	318.706 0.0	1/2 ⁻ 3/2 ⁻				

 ${}^{69}_{31}\text{Ga}_{38}$ -9

					A	dopted Levels,	Gammas (cor	ntinued)	
						γ (⁶⁹ Ga)	(continued)		
E _i (level)	J_i^π	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α^{jn}	Comments
2007.66	3/2 ⁽⁻⁾ ,5/2 ⁽⁻⁾	1135.58 7	23.5 25	872.147	3/2-	M1+E2 ^a		2.30×10 ⁻⁴ 14	B(M1)(W.u.)=0.0035 6; B(E2)(W.u.)=4.1 7 α (K)=0.000204 12; α (L)=2.06×10 ⁻⁵ 13; α (M)=3.01×10 ⁻⁶ 18 α (N)=1.63×10 ⁻⁷ 9; α (IPF)=1.9×10 ⁻⁶ 4 δ : -0.38 9 for a 3/2 to 3/2 transition; +0.15 4 for a 5/2 to 3/2 transition.
		2007.56 7	100 8	0.0	3/2-	(M1+E2) ^{&}		0.00036 <i>3</i>	B(M1)(W.u.)=0.0027 4; B(E2)(W.u.)=1.02 15 α (K)=6.70×10 ⁻⁵ 15; α (L)=6.70×10 ⁻⁶ 15; α (M)=9.80×10 ⁻⁷ 22 α (N)=5.33×10 ⁻⁸ 11; α (IPF)=0.00029 3 δ : -1.3 +4-6 for a 3/2 to 3/2 transition; +0.01 2 for a 5/2 to 3/2 transition.
2023.91	5/2-	1149.6 5	8.0 13	872.147	3/2-				E_{γ} : This transition is not included in the least-squares fit for the excitation energies since the energy fit is poor. The least-squares fit gives E_{γ} =1151.71 9.
		1449.58 12	8.7 7	574.220	$5/2^{-}$				
		2023.99 13	100 7	0.0	3/2-	M1+E2 ^{<i>a</i>}	+0.16 ^b 3	3.43×10 ⁻⁴	$\begin{aligned} &\alpha(\mathrm{K}) = 6.50 \times 10^{-5} \ 9; \ \alpha(\mathrm{L}) = 6.50 \times 10^{-6} \ 9; \\ &\alpha(\mathrm{M}) = 9.50 \times 10^{-7} \ 14 \\ &\alpha(\mathrm{N}) = 5.18 \times 10^{-8} \ 8; \ \alpha(\mathrm{IPF}) = 0.000271 \ 4 \end{aligned}$
2045.24	5/2-	1173.09 9	90 <i>12</i>	872.147	3/2-	M1+E2 ^{<i>a</i>}		2.17×10 ⁻⁴ 12	B(M1)(W.u.)=0.0127 19; B(E2)(W.u.)=0.12 5 B(M1)(W.u.)=0.037 8; B(E2)(W.u.)=2.2 10 α (K)=0.000191 10; α (L)=1.92×10 ⁻⁵ 11; α (M)=2.81×10 ⁻⁶ 16 α (N)=1.52×10 ⁻⁷ 8; α (IPF)=4.5×10 ⁻⁶ 8
		1471.24 <i>21</i>	97 11	574.220	5/2-	M1+E2 ^{<i>a</i>}		2.01×10 ⁻⁴ 13	δ: -0.23 5 or -1.8 2 in (p, γ). $ α(K)=0.000120 4; α(L)=1.21 \times 10^{-5} 5; $ $ α(M)=1.77 \times 10^{-6} 6 $ $ α(D) = 0.6140^{-8} 2 + (DE) 6.71410^{-5} 0. $
									$\begin{array}{l} \alpha(N) = 9.6 \times 10^{-5} 3; \ \alpha(IPF) = 6.7 \times 10^{-5} 9 \\ B(M1)(W.u.) = 0.020 \ 4; \ B(E2)(W.u.) = 0.4 + 7 - 4 \\ \delta: \ +0.17 \ 14 \ \text{or} \ -1.15 \ 25 \ \text{in} \ \leftarrow p, \gamma). \end{array}$
		2044.98 18	100 9	0.0	3/2-	M1+E2 ^{<i>a</i>}	+0.26 ^b 12	3.53×10 ⁻⁴ 6	B(M1)(W.u.)=0.0076 14; B(E2)(W.u.)=0.19 17 α (K)=6.39×10 ⁻⁵ 9; α (L)=6.39×10 ⁻⁶ 9; α (M)=9.34×10 ⁻⁷ 14 α (N)=5.09×10 ⁻⁸ 8; α (PE)=0.000282.6
2219.29		1900.59 <i>20</i> 2218.9 <i>6</i>	100 41	318.706 0.0	1/2 ⁻ 3/2 ⁻				a(11)=5.09×10 0, a(111)=0.000262 0
2250.99	(1/2,3/2) ⁻	1932.33 17	62 7	318.706	1/2-	(M1(+E2))&		0.00033 3	B(M1)(W.u.)=0.012 6 $\alpha(K)=7.18\times10^{-5}$ 16; $\alpha(L)=7.19\times10^{-6}$ 17; $\alpha(M)=1.050\times10^{-6}$ 24 $\alpha(N)=5.71\times10^{-8}$ 13; $\alpha(IPF)=0.000254$ 25 δ : +0.03 12 for 3/2 to 1/2 transition.

							Adopted Levels	, Gammas (co	ontinued)	
							γ (⁶⁹ Ga	a) (continued)		
	E _i (level)	J_i^π	E_{γ}	I_{γ}^{\dagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α^{jn}	Comments
	2250.99	(1/2,3/2) ⁻	2250.91 12	100 8	0.0	3/2-	(M1+E2)&		0.00046 4	$\alpha(K)=5.46\times10^{-5} \ 11; \ \alpha(L)=5.46\times10^{-6} \ 12; \\ \alpha(M)=7.98\times10^{-7} \ 17 \\ \alpha(N)=4.34\times10^{-8} \ 9; \ \alpha(IPF)=0.00040 \ 4 \\ \delta: \ 0.23 \ 8 \ for \ 3/2 \ to \ 3/2 \ transition$
	2319.55	(5/2+,7/2+)	1212.50 <i>19</i>	100	1107.04	5/2-	(E1+M2) ^{&}		1.57×10 ⁻⁴ 4	$\alpha(K)=9.0\times10^{-5} 3; \ \alpha(L)=9.1\times10^{-6} 3; \alpha(M)=1.32\times10^{-6} 5 \alpha(N)=7.16\times10^{-8} 24; \ \alpha(IPF)=5.62\times10^{-5} 10 \delta: -0.23 8 \text{ for } 7/2 \text{ to } 5/2 \text{ transition; } -1.2 2 \text{ for } 5/2 \text{ transition} $
	2353.30	5/2	1246.6 <i>4</i> 1481.4 <i>5</i> 1778 5 5	68 87 68	1107.04 872.147 574 220	5/2 ⁻ 3/2 ⁻ 5/2 ⁻	$D(+Q)^{\&}$ $D(+Q)^{\&}$	$^{+0.17^{b}}_{-0.19^{b}}$ 30		5/2 to 5/2 trainfilm
	2423.29		2353.0 5 897.64 19 935.31 10 1849.00 11 2422.9 2	100 39 <i>13</i> 90 <i>14</i> 100 <i>11</i> 61 <i>13</i>	0.0 1525.76 1488.07 574.220 0.0	3/2 ⁻ 3/2 ⁻ 3/2 ⁻ 7/2 ⁻ 5/2 ⁻ 3/2 ⁻	D(+Q) ^{&}	-0.04 ^b 30		
11	2428.68	5/2 ⁻ ,7/2 ⁻	1321.64 20	100	1107.04	5/2-	(M1+E2) [‡]		1.95×10 ⁻⁴ 11	B(M1)(W.u.)<0.0053; B(E2)(W.u.)<4.6 $\alpha(K)=0.000149$ 6; $\alpha(L)=1.50\times10^{-5}$ 7; $\alpha(M)=2.19\times10^{-6}$ 10 $\alpha(N)=1.19\times10^{-7}$ 5; $\alpha(IPF)=2.9\times10^{-5}$ 5 δ : +0.35 20 for 7/2 to 5/2 transition; +0.0 2 for 5/2 transition
	2458.84	7/2 ⁽⁻⁾	1884.6 <i>1</i>	100	574.220	5/2-	(M1+E2) ^{&}	-0.17 ^b 3	2.93×10 ⁻⁴	$\alpha(K)=7.39\times10^{-5} 11; \ \alpha(L)=7.39\times10^{-6} 11; \alpha(M)=1.081\times10^{-6} 16 \alpha(N)=5.89\times10^{-8} 9; \ \alpha(IPF)=0.000211 3 B(M1)(W.u.)=(0.021 +9-21); B(F2)(W.u.)=(0.27 +14-27) $
	2485.70	5/2+	2485.65 10	100	0.0	3/2-	(E1(+M2))&	-0.04 ^b 6	9.81×10 ⁻⁴ 15	$\alpha(K)=2.84\times10^{-5} \ 6; \ \alpha(L)=2.83\times10^{-6} \ 6; \alpha(M)=4.14\times10^{-7} \ 9 \alpha(N)=2.25\times10^{-8} \ 5; \ \alpha(IPF)=0.000950 \ 15 B(E1)(W.u.)=(0.00037 + 16-27);$
	2529.81	(3/2)-	1657.63 20	32	872.147	3/2-	(M1(+E2))&	-0.05 ^b 25	2.25×10 ⁻⁴ 5	B(M2)(W.u.)= $(0.4 + 14 - 4)$ $\alpha(K)=9.33 \times 10^{-5} 14; \alpha(L)=9.35 \times 10^{-6} 14;$ $\alpha(M)=1.367 \times 10^{-6} 20$ $\alpha(N)=7.44 \times 10^{-8} 11; \alpha(IPF)=0.000121 3$ B(M1)(W.u.)= $(0.015 5);$ B(E2)(W.u.)= $(0.021 + 214 - 21)$
			2529.76 10	100	0.0	3/2-	(M1(+E2)) ^{&}	-0.03 ^b 10	5.42×10 ⁻⁴	$\alpha(K)=4.41\times10^{-5}$ 7; $\alpha(L)=4.40\times10^{-6}$ 7; $\alpha(M)=6.43\times10^{-7}$ 9

							γ (⁶⁹ Ga	a) (continued)		
	E _i (level)	J^{π}_i	Eγ	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.	δ	α^{jn}	Comments
	2572.54	9/2+	1235.84 20	100	1336.69	7/2-	(E1+M2) [‡]		1.69×10 ⁻⁴ 4	$\begin{aligned} \alpha(N) &= 3.51 \times 10^{-8} 5; \ \alpha(IPF) = 0.000492 \ 7 \\ B(M1)(W.u.) &= (0.014 \ 4); \ B(E2)(W.u.) = (0.003 \ +20 - 3) \\ \alpha(K) &= 8.7 \times 10^{-5} \ 3; \ \alpha(L) = 8.7 \times 10^{-6} \ 3; \\ \alpha(M) &= 1.28 \times 10^{-6} \ 5 \\ \alpha(N) &= 6.92 \times 10^{-8} \ 23; \ \alpha(IPF) = 7.15 \times 10^{-5} \ 13 \\ \delta: \ +0.60 \ 25 \ \text{for} \ 5/2 \ \text{to} \ 7/2 \ \text{transition}; \ -0.50 \ 15 \ \text{for} \\ 0/2 \ \text{to} \ 7/2 \ \text{transition}; \ -0.50 \ 15 \ \text{for} \end{aligned}$
	2660.3 2668.28	3/2 ⁻ 11/2	2340 <i>4</i> 1180.04 <i>10</i> 1331 63 6	100 46 100	318.706 1488.07 1336.69	1/2 ⁻ 7/2 ⁻ 7/2-				9/2 to 7/2 transition.
	2717.99	13/2 ⁽⁺⁾	745.61 2	100	1972.37	9/2 ⁽⁺⁾	(E2(+M3)) [#]	-0.01 [@] 3	6.79×10 ⁻⁴ 11	$\alpha(K)=0.000607 \ 10; \ \alpha(L)=6.21\times10^{-5} \ 10; \ \alpha(M)=9.06\times10^{-6} \ 14 \ \alpha(N)=4.83\times10^{-7} \ 8 \ B(E2)(Wn)<1.0\times10^{2}2; \ B(M3)(Wn)<9.2\times10^{5}2$
	2795.0	$(7/2)^{-}$	822.5 5	100	1972.37	$9/2^{(+)}$				D(E2)(W.u.)<1.0×10 :, D(W3)(W.u.)<9.2×10 :
	3118.39	11/2-	1146.1 <i>3</i>	70	1972.37	9/2 ⁽⁺⁾	D(+Q) [‡]	+0.02 [@] 11		
2			1353.55 20	100	1764.78	9/2-	M1+E2 [#]	+0.31 [@] 17	1.86×10 ⁻⁴ 4	α (K)=0.0001378 22; α (L)=1.384×10 ⁻⁵ 23; α (M)=2.02×10 ⁻⁶ 4 α (N)=1.100×10 ⁻⁷ 18; α (IPF)=3.18×10 ⁻⁵ 11
	3242.44	13/2-	1477.65 6	100	1764.78	9/2-	E2(+M3)	+0.01 [@] 5	2.15×10 ⁻⁴ 4	B(M1)(W.u.)=0.020 5; B(E2)(W.u.)=1.6 +17-16 α (K)=0.0001228 20; α (L)=1.235×10 ⁻⁵ 21; α (M)=1.81×10 ⁻⁶ 3 α (M)=0.55 10 ⁻⁶ (ME) 5.01 10 ⁻⁵ 12
										$\alpha(N)=9.7/\times10^{-6}$ 16; $\alpha(IPF)=7.81\times10^{-5}$ 12 B(E2)(W.u.)=(10 6); B(M3)(W.u.)=(3.E+3+31-3) Mult.: from $\gamma(\theta)$ in ⁶⁴ Ni(⁷ Li,2n\gamma); E2 from RUL.
	3389.33	(15/2+)	671.34 8	100	2717.99	13/2 ⁽⁺⁾	M1+E2#	+0.50 ^(@) 4	6.98×10 ⁻⁴ 12	$\alpha(K)=0.000625 \ 11; \ \alpha(L)=6.35\times10^{-5} \ 11; \\ \alpha(M)=9.28\times10^{-6} \ 16 \\ \alpha(N)=5.00\times10^{-7} \ 9$
	3542.76	11/2 ⁽⁺⁾	824.77 8	100	2717.99	13/2 ⁽⁺⁾	M1+E2 [#]	+0.35 [@] 4	4.27×10 ⁻⁴ 7	B(M1)(W.u.)=0.031 17; B(E2)(W.u.)=26 14 α (K)=0.000383 6; α (L)=3.87×10 ⁻⁵ 6; α (M)=5 66×10 ⁻⁶ 9
						()		e		$\alpha(N)=3.06\times10^{-7} 5$ B(M1)(W.u.)=0.083 14; B(E2)(W.u.)=23 6
	3633.95	17/2 ⁽⁺⁾	915.95 <i>5</i>	100	2717.99	13/2 ⁽⁺⁾	E2(+M3)	+0.00 [@] 2	4.00×10 ⁻⁴	$\alpha(K)=0.000358 5; \alpha(L)=3.63\times10^{-5} 6; \alpha(M)=5.31\times10^{-6} 8 \alpha(N)=2.85\times10^{-7} 4 B(E2)(W.u.)=(37 19) Wult + O from \alpha(0) in f^{4}N!(^{7}L; 2u_{2}); E2 from$
	3722.30	(11/2,13/2)	333.0 5	12	3389.33	(15/2+)				RUL.

From ENSDF

 $^{69}_{31}{
m Ga}_{38}$ -12

 $_{31}^{69}$ Ga₃₈-12

Т

Adopted Levels, Gammas (continued)													
γ ⁽⁶⁹ Ga) (continued)													
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	E_f	\mathbf{J}_{f}^{π}	Mult.	δ	$lpha^{jn}$	Comments				
3722.30	(11/2,13/2)	1004.30 6	100	2717.99	13/2 ⁽⁺⁾	D+Q [‡]			δ : +0.00 4 if it is a 11/2 to 13/2 transition; -1.0 2 if it is a 13/2 to 13/2 transition.				
3786.07	(15/2)	1117.78 <i>10</i>	100	2668.28	11/2	(E2) [#]		2.51×10 ⁻⁴	$\alpha(K)=0.000223 \ 4; \ \alpha(L)=2.26\times10^{-5} \ 4; \alpha(M)=3.30\times10^{-6} \ 5 \alpha(N)=1.779\times10^{-7} \ 25; \ \alpha(IPF)=1.361\times10^{-6} \ 20 B(E2)(Wu)=19 \ 4$				
4078 20	$(15/2)^{-}$	444 0 4	15	3633 95	$17/2^{(+)}$	(D) [‡]							
1070.20	(13/2)	835.76 7	100	3242.44	13/2-	M1+E2 [#]	+0.52 [@] 7	4.25×10 ⁻⁴ 8	α (K)=0.000381 7; α (L)=3.85×10 ⁻⁵ 7; α (M)=5.63×10 ⁻⁶ 10 α (N)=3.05×10 ⁻⁷ 6 B(M1)(W.u.)=0.047 9; B(E2)(W.u.)=28 8				
4528.10 6874.2 7306.9	(17/2,19/2) 1/2 5/2 ⁺	449.9 <i>I</i> 4214 <i>4</i> 4309 ⁰ <i>4</i> 4417 <i>4</i> 4896 ⁰ <i>4</i> 4980 <i>4</i> 5349 <i>4</i> 6002 <i>4</i> 6554 <i>4</i> 6874 <i>4</i> 3988 6 4024 6 4081 6	100 7.3 15 4.9 10 7.3 15 12 2 4.9 10 9.8 20 39 8 100 20 49 10 7.9 12 1.9 3 4 2 6	4078.20 2660.3 2564.3 2458.84 1973.08 1891.64 1525.76 872.147 318.706 0.0 3319 3283 3211	$(15/2)^{-} 3/2^{-} (1/2)^{-} 3/2^{-}$				$\mathbf{E}_{\mathbf{v}}$: This transition is not included in the				
		4102 4 4230 4 4255 3 4328 2 4342 3 4342 3 4342 3 4342 3 4342 3 4342 3 4509 3 4541 3 4646 2 4822 2 4849 2 4880 3 4954 3 5109 3	$\begin{array}{c} 4.2 \ 6\\ 6.5 \ 10\\ 6.9 \ 10\\ 2.3 \ 3\\ 0.77 \ 12\\ 1.5 \ 2\\ 0.77 \ 12\\ 3.8 \ 6\\ 1.15 \ 17\\ 8.1 \ 12\\ 3.8 \ 6\\ 3.7 \ 6\\ 1.9 \ 3\\ 2.5 \ 4\\ 0.96 \ 14 \end{array}$	3203 3077 3052 2978.8 2965 2860 2847 2795.0 2766 2660.3 2485.70 2458.84 2428.68 2353.30 2197	(3/2 ⁻) 5/2 ⁺ 3/2,7/2 - - + (7/2) ⁻ 3/2 ⁻ 5/2 ⁺ 7/2 ⁽⁻⁾ 5/2 ⁻ ,7/2 ⁻ 5/2				E_{γ} : This transition is not included in the least-squares fit for the excitation energies since the energy fit is poor. It cannot be placed from a level within ±10 keV.				

From ENSDF

 $^{69}_{31}$ Ga $_{38}$ -13

Т

$\gamma(^{69}$ Ga) (continued)

E _i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}^{\dagger}	E_f	\mathbf{J}_f^{π}	Mult.	Comments
7306.9	5/2+	5383 3 5415 3 5818 2 6434 2 6732 2 7306 2	0.19 3 1.5 2 11.5 17 5.8 9 6.9 10 100 15	1924.25 1891.64 1488.07 872.147 574.220 0.0	7/2 ⁻ 3/2 ⁻ 7/2 ⁻ 3/2 ⁻ 5/2 ⁻ 3/2 ⁻	E1	 α(IPF)=0.00258 4 B(E1)(W.u.)=0.00013 +3-4 Mult.: from γ(θ) of 7306γ in ⁶⁹Ga(γ,γ') and its linear polarization measurement assumed to be dipole.
9813.6		8287	56	1525.76	3/2-	D ^k	-F
		8941	44	872.147	3/2-	D ^k	
		9494		318.706	$1/2^{-}$	D ^k	Transition not seen in 68 Zn(p, γ).
		9813	100	0.0	3/2-	D ^k	
10247.8		7683	34	2564.3		D ^k	
		8275	100	1972.37	$9/2^{(+)}$	D ^k	
		8759	20	1488.07	$7/2^{-}$	D ^k	
10251.7		7687	21	2564.3		D ^k	
		8279	100	1972.37	$9/2^{(+)}$	D ^k	
		8763	27	1488.07	$7/2^{-}$	D ^k	
10256.8		7692	47	2564.3		D ^k	
		8284	100	1972.37	$9/2^{(+)}$	D ^k	
		8768	26	1488.07	7/2-	D ^k	
 Relati From 	ive phot $\gamma(\theta)$ in $\gamma(\theta)$ in $\gamma(\theta)$ in $\gamma(\theta)$ in $\gamma(\theta)$ in $\gamma(\theta)$ in $\gamma(\theta)$ in $\gamma(\theta)$ in $\gamma(\theta)$ in $\gamma(\theta)$ in $\alpha(\exp)$	on branchi 64 Ni(7 Li,2 64 Ni(7 Li,2 64 Ni(7 Li,2 68 Zn(p, γ) 68 Zn(p, γ) 69 Ga(n, γ) 69 Ga(p,p') 69 Ga(p,p') 69 Ga(p,p') 69 Ga(p,p') 69 Ga(p,p')	ing from eac $2n\gamma$) and J^{π} $2n\gamma$) and RU $2n\gamma$). and J^{π} of in and RUL. levels. γ). γ) and J^{π} of γ) and RUL γ). decay.	ch level. of initial an IL. nitial and fin initial and	d final le nal levels final lev	evels. 3.	

 $\gamma(^{69}\text{Ga})$ (continued)

- ^h From $\gamma\gamma(\theta)$ in ⁶⁹Ge ε decay and J^π of initial and final levels. ⁱ From $\gamma(\theta)$ in ⁶⁹Ge ε decay and RUL. ^j $\alpha(\exp)$ from ⁶⁹Ge ε decay. ^k From $\gamma(\theta)$ in ⁶⁸Zn(p, γ).

- ^{*l*} From $(n,n'\gamma)$. I γ (1654)=49 in (p,γ) .
- ^{*m*} Weighted average from (p,γ) and $(n,n'\gamma)$.
- ⁿ Additional information 1.
 ^o Placement of transition in the level scheme is uncertain.

15

⁶⁹₃₁Ga₃₈

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

Level Scheme (continued)

Intensities: Relative photon branching from each level

