

U(p,X) 2022Po02

Type	Author	History
Full Evaluation	C. D. Nesaraja	NDS 207,1 (2026)
		Citation
		1-Apr-2023

2022Po02: ^{69}Fe isotopes were produced at TRIUMF's Isotope Separator and Accelerator (ISAC) by impinging 480 MeV protons on a UC_x target. The reaction products ionized with TRIUMF's resonant laser ion source (TRILIS) using the two-step resonant laser excitation scheme. The ionized beams were mass separated and transported to TRIUMF's Ion Trap for Atomic Nuclear (TITAN) facility where MR-ToF-MS measurements were used to determine masses of the Fe ions based on tof and kinetic energy. Measured mass excess for g.s and isomer and deduced excitation energy for the isomer.

 ^{69}Fe Levels

E(level)	J^π	Comments
0.0	$(1/2^-)$	Measured mass excess=-39504 keV <i>11</i> (2022Po02). J^π : Proposed by 2022Po02 based on neutron orbital patterns in $^{63,65,67,69}\text{Fe}$ nuclei. Using the mean-field single-particle neutron energies obtained with the Woods-Saxon Hamiltonian, the 43rd neutron occupies the $p_{1/2}$ orbital.
222.14	$(7/2^+)$	E(level): From the directly measured masses of $\text{ME}=-39504$ <i>11</i> and $\text{ME}-39281.7$ <i>91</i> for the ground state and the isomer in 2022Po02. $T_{1/2}$: 100-200 ms from storage ring time measurement by 2022Po02. J^π : Based on configuration and partial half-life (Weisskopf)=162 ms as deduced by the evaluator. Note that the authors in 2022Po02 favored $9/2^+$. Configuration= $\nu 7/2[413]$. Measured mass excess=-39281.7 keV <i>91</i> (2022Po02).