⁶⁹Ni β^- decay (11.4 s) 2001Fr21,1988Bo06

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja	NDS 115, 1 (2014)	31-Jul-2013

Parent: ⁶⁹Ni: E=0.0; $J^{\pi}=(9/2^+)$; $T_{1/2}=11.4$ s 3; $Q(\beta^-)=5758$ 4; $\%\beta^-$ decay=100.0

2001Fr21,1998Fr15: ⁶⁹Ni produced from 30 MeV proton induced fission reaction on ²³⁸U. Extracted selectively by resonant laser ionization and mass separator (LIGIS-LISOL) facility at Leuven. Measured $\beta\gamma$ and $\gamma\gamma$ coincidence spectra with high purity Ge detectors and plastic scintillators. Measured $T_{1/2}$ from timing of β delayed γ intensity.

1999Pr10,1998PrZY: ⁶⁹Ni produced by fragmentation of 70 MeV/nucleon ⁷⁶Ge beam on Be target using the A1200 separator at NSCL, MSU. β delay γ measured with two thin plastic scintillators and two large-volume Ge detectors.

1988Bo06,1987BoZW: ⁶⁹Ni produced by irradiation of thick W target with 11.5 MeV/u ⁷⁶Ge beam followed by on-line mass separation; measured E γ , I γ , $\beta\gamma$, $\gamma\gamma$ coincidences using 300 μ m Si detector, NE102A plastic scintillator, 33 % efficiency Ge and 4π lucite detectors.

1985Bo49: ⁶⁹Ni produced and identified in W(⁷⁶Ge,X) reaction at 11.4 MeV/nucleon followed by mass separation at GSI facility. Measured γ , β , $\beta\gamma$ coin on the decay of 205 γ , 680 γ and 1213 γ , and isotopic half-life using Ge, Si detectors and plastic scintillators.

1985Bo49: ⁶⁹Ni produced by irradiation of W target with 11.4 MeV/u ⁷⁶Ge beam. On-line mass separation; measured E γ , I γ , T_{1/2}, $\beta\gamma$ coincidences.

1985Ru05: ⁶⁹Ni produced by irradiation of W target with 11.5 MeV/nucleon ⁷⁶Se beam followed by on-line mass separation. Measured E γ , I γ , T_{1/2}, $\beta\gamma$ coincidences using 4π plastic β and Ge detectors.

⁶⁹Cu Levels

M: From Adopted Levels.

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2}	Comments
0	3/2-	2.85 min 15	$T_{1/2}$: weighted average of 2.7 m 1 (1985Ru05) and 3.0 m 1 (1966Va12).
1213.53 10	(5/2,7/2)-		J^{π} : For $5/2^-$, one expects $\log f^{lu}t > 8.5$ with β - feeding <1 %. Limit of β - feeding by author could be accounted for by the existence of high energy γ' s that have escaped detection.
1711.4 <i>3</i>	$7/2^{-}$		*
1871.3 <i>3</i>	7/2-		
2182.1 3	9/2-		
2551.8 3	$(9/2^+)$		
2602.9 3	$(9/2^{-})$		
2696.9 <i>3</i>	$(7/2^+, 9/2^+, 11/2^+)$		
2757.0 3	$(7/2^+, 9/2^+, 11/2^+)$		
2800.9 3	$(7/2^+, 9/2^+, 11/2^+)$		
3063.7 4			
† From Ac ‡ From lea	lopted Levels.		

 β^{-} radiations

E(decay)	E(level)	Ιβ ^{-‡}	$\log ft^{\dagger}$	Comments
(2694 4)	3063.7	0.1	>6.9	av Eβ=1138.5 <i>19</i>
(2957 4)	2800.9	6.0	>5.3	av $E\beta = 1263.6\ 20$
(3001 4)	2757.0	40.6	>4.5	av $E\beta = 1284.6\ 20$
(3061 4)	2696.9	33.2	>4.6	av $E\beta = 1313.4\ 20$
(3155 4)	2602.9	0.01	>8.2	av E β =1358.4 20
(3206 4)	2551.8	10.3	>5.2	av E β =1382.8 20

Continued on next page (footnotes at end of table)

⁶⁹Ni β⁻ decay (11.4 s) 2001Fr21,1988Bo06 (continued)

 β^- radiations (continued)

Iβ^{-‡} Log *ft*[†] E(decay) E(level) Comments (3576 4) 2182.1 0.3 >6.9 av Eβ=1560.4 20 av $E\beta$ =1710.3 20 av $E\beta$ =1710.3 20 av $E\beta$ =1787.6 20 av $E\beta$ =2028.7 20 Log ft: log f^{1u}t>7.7. (3887 4) 1871.3 0.01 >8.6 1711.4 (4047 4) 1.7 >6.4 1213.53 7.9 (4544 4) >6.0

 † Authors give lower limits to account for possible unobserved feeding from higher levels.

[‡] Absolute intensity per 100 decays.

- 1:-- - f

$\gamma(^{69}Cu)$

I γ normalization: From $\Sigma I\gamma(gs)=100$, one gets NR=0.42 and this gives I β values close to those given here.

E_{γ}^{\ddagger}	I_{γ} ‡&	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	J_f^π	Mult.@	α^{\dagger}	Comments
104.1 2 154.1 <i>I</i> ^x 183.2 5	2.4 5 4.5 6 10 <i>1</i>	2800.9 2757.0	$(7/2^+, 9/2^+, 11/2^+)$ $(7/2^+, 9/2^+, 11/2^+)$	2696.9 2602.9	(7/2 ⁺ ,9/2 ⁺ ,11/2 ⁺) (9/2 ⁻)			E_{γ} ,I: From 1988Bo06. Looked for but not seen by
205.1 <i>I</i> x231.4 <i>10</i>	61.5 <i>21</i> 0.9 <i>3</i>	2757.0	$(7/2^+, 9/2^+, 11/2^+)$	2551.8	(9/2+)			20011121.
249.1 <i>I</i> 262.8 2	9.5 <i>17</i> 0.1.2	2800.9 3063 7	$(7/2^+, 9/2^+, 11/2^+)$	2551.8 2800.9	$(9/2^+)$ $(7/2^+, 9/2^+, 11/2^+)$			
470.7 1	28.0 16	2182.1	9/2-	1711.4	(1/2 ,9/2 ,11/2) 7/2 ⁻	(M1)	0.001128 16	$ α = 0.001128 \ 16; \ α(K) = 0.001013 \ 15; $ $ α(L) = 0.0001009 \ 15; \ α(M) = 1.419 \times 10^{-5} \ 20 $ $ α(N) = 4.33 \times 10^{-7} \ 6 $ E _γ : 1988B006 placed 470.5 γ transition from 2755.8 level.
574.9 1	27.2 15	2757.0	$(7/2^+, 9/2^+, 11/2^+)$	2182.1	9/2-			E_{γ} : 1988Bo06 placed 574.6 γ transition from 2285.4 level.
^x 584.8 3	≤1.0							
680.5 1	94.6 22	2551.8	(9/2+)	1871.3	7/2-	(E1)	0.000258 4	$\alpha = 0.000258 \ 4; \ \alpha(K) = 0.000232 \ 4; \ \alpha(L) = 2.29 \times 10^{-5} \\ 4; \ \alpha(M) = 3.21 \times 10^{-6} \ 5; \ \alpha(N+) = 9.77 \times 10^{-8} \ 14 \\ \alpha(N) = 9.77 \times 10^{-8} \ 14$
^x 780.8.3	1.2.6							
1089.3 <i>4</i> 1213.5 <i>1</i>	2.0 8 100.0	2800.9 1213.53	$(7/2^+, 9/2^+, 11/2^+)$ $(5/2, 7/2)^-$	1711.4 0	7/2 ⁻ 3/2 ⁻			
1336.0 [#] 7 1389.5 5	1.1 5 3.3 8	2551.8 2602.9	(9/2 ⁺) (9/2 ⁻)	1213.53 1213.53	(5/2,7/2) ⁻ (5/2,7/2) ⁻			E_{γ} : Poor fit to level energy difference.
1483.6 [#] 4	79 <i>3</i>	2696.9	$(7/2^+, 9/2^+, 11/2^+)$	1213.53	$(5/2,7/2)^{-}$			
1711.9 6	33.9 21	1711.4	7/2-	0	3/2-	(E2)	0.000261 4	$ \begin{array}{l} \alpha = 0.000261 \ 4; \ \alpha(\mathrm{K}) = 7.57 \times 10^{-5} \ 11; \\ \alpha(\mathrm{L}) = 7.44 \times 10^{-6} \ 11; \ \alpha(\mathrm{M}) = 1.046 \times 10^{-6} \ 15; \\ \alpha(\mathrm{N}+) = 0.0001763 \end{array} $
								α (N)=3.21×10 ⁻⁸ 5; α (IPF)=0.0001763 25
1872.3 8	94.6 <i>32</i>	1871.3	7/2-	0	3/2-	(E2)	0.000321 5	$\alpha = 0.000321 5; \alpha(K) = 6.39 \times 10^{-5} 9; \alpha(L) = 6.27 \times 10^{-6}$ 9; $\alpha(M) = 8.82 \times 10^{-7} 13; \alpha(N+) = 0.000250 4$ $\alpha(N) = 2.71 \times 10^{-8} 4; \alpha(IPE) = 0.000250 4$
^x 2285	1.7 7							a(ii) 2.71/10 7, a(iii)=0.0002507
2550# 2	587	2551.8	$(9/2^+)$	0	3/2-			
2695 [#] 2	397	2551.0	$(7/2^+ 9/2^+ 11/2^+)$	0	3/2-			
2075 2	5.11	2070.7	(1/2, 7/2, 11/2)	U	5/2			

[†] Additional information 1.

ω

 $^{69}_{29}\mathrm{Cu}_{40}$ -3

69 Ni β^- decay (11.4 s) 2001Fr21,1988Bo06 (continued)

 $\gamma(^{69}Cu)$ (continued)

^{\ddagger} From 2001Fr21, except as noted otherwise. Due to limited statistics and decreasing detector efficiency for high energy transitions, γ 's to g.s. from levels above 2 MeV may have be missed.

4

From 1988Bo06. @ From Adopted Levels. & For absolute intensity per 100 decays, multiply by ≈ 0.42 . x γ ray not placed in level scheme.

⁶⁹Ni β^- decay (11.4 s) 2001Fr21,1988Bo06

