### Adopted Levels, Gammas

|                                                                                                                                                                              |                                                                                                                                 | Type                         | Author                                                                                             | History                                                                                                                                                                                                                                                          | Literature Cutoff Date                                                                                                                                                                                                              |  |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------|----------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
|                                                                                                                                                                              | F                                                                                                                               | ull Evaluation C             | 2. D. Nesaraja                                                                                     | NDS 115, 1 (2014)                                                                                                                                                                                                                                                | 31-Jul-2013                                                                                                                                                                                                                         |  |  |  |  |
| $Q(\beta^-)=2681.4 \ 17; \ S(n)=8240.5 \ 21; \ S(p)=9561 \ 3; \ Q(\alpha)=-8975.9 \ 25 \ 2012Wa38$<br>2012Ga06: Summary and compilation of the discovery of the Cu isotopes. |                                                                                                                                 |                              |                                                                                                    |                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                              |                                                                                                                                 |                              | 69                                                                                                 | <sup>9</sup> Cu Levels                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                              |                                                                                                                                 |                              | Cross Refe                                                                                         | erence (XREF) Flags                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                     |  |  |  |  |
|                                                                                                                                                                              |                                                                                                                                 | A 69<br>B 69<br>C 70<br>D 70 | Ni $\beta^-$ decay (3.<br>Ni $\beta^-$ decay (11<br>Zn(d, <sup>3</sup> He)<br>Zn(pol t, $\alpha$ ) | 5 s) E Coulom<br>I.4 s) F (ΗΙ,xnγ<br>G U(p,X)                                                                                                                                                                                                                    | b excitation<br>)                                                                                                                                                                                                                   |  |  |  |  |
| E(level) <sup>†</sup>                                                                                                                                                        | J <sup>π#@</sup>                                                                                                                | T <sub>1/2</sub>             | XREF                                                                                               |                                                                                                                                                                                                                                                                  | Comments                                                                                                                                                                                                                            |  |  |  |  |
| 0.0                                                                                                                                                                          | 3/2-                                                                                                                            | 2.85 min                     | 15 ABCDEFG                                                                                         | $%β^{-}=100$<br>μ=+2.8383 <i>10</i> (2014<br>Q=-0.147 <i>16</i> (2010)<br>J <sup>π</sup> : measured from I<br>(pol t,α) and (d, <sup>3</sup> )<br>μ,Q: from resonance<br>2011StZZ. Other:<br>detection (2000Ri<br>T <sub>1/2</sub> : weighted aver<br>(1966Va12) | 0Vi07)<br>Vi07)<br>hyperfine spectra (2010Vi07), $\pi$ confirmed from<br>He).<br>e cell laser spectroscopy. Compiled by<br>$\pm 2.84 \ I$ NMR on oriented nuclei with $\beta$<br>i14).<br>age of 2.7 m $I$ (1985Ru05) and 3.0 m $I$ |  |  |  |  |
| 1096.0 <i>10</i>                                                                                                                                                             | 1/2-                                                                                                                            | 2.0 ps 2                     | CDE                                                                                                | <ul> <li>J<sup>π</sup>: from <sup>70</sup>Zn(pol t,α) differential cross section and analyzing powers.</li> <li>T<sub>1/2</sub>: Deduced by evaluators from experimental B(E2)(W.u.)(2008St04) in Coulomb Excitation and adopted branching ratio</li> </ul>      |                                                                                                                                                                                                                                     |  |  |  |  |
| 1110                                                                                                                                                                         | 1/2-                                                                                                                            |                              | Α                                                                                                  | branching ratio.                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                     |  |  |  |  |
| 1213.53 <sup>‡</sup> 10                                                                                                                                                      | (5/2,7/2)-                                                                                                                      | 4.3 ps 4                     | BCDEF                                                                                              | T <sub>1/2</sub> : Deduced by e<br>B(E2)(W.u.)(2008<br>branching ratio.<br>$I^{\pi}$ : L (d <sup>3</sup> Ha)=3 for                                                                                                                                               | valuators from experimental<br>8\$t04) in Coulomb Excitation and adopted<br>0 <sup>+</sup> target                                                                                                                                   |  |  |  |  |
| 1297.91 10                                                                                                                                                                   | $(1/2^-, 3/2^-)$                                                                                                                |                              | A C                                                                                                | XREF: C(1310?).                                                                                                                                                                                                                                                  | - (1/2=)                                                                                                                                                                                                                            |  |  |  |  |
| 1430?<br>1560?                                                                                                                                                               |                                                                                                                                 |                              | C<br>C                                                                                             | $J^{*}: \log jl = 4.39$ from                                                                                                                                                                                                                                     | 1 (1/2).                                                                                                                                                                                                                            |  |  |  |  |
| 1711.4 <sup>&amp;</sup> 3                                                                                                                                                    | 7/2-                                                                                                                            |                              | BCD F                                                                                              | XREF: C(1740).                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                     |  |  |  |  |
| 1871.3 <sup><i>a</i></sup> 3                                                                                                                                                 | 7/2-                                                                                                                            | 0.30 ps 5                    | BCDEF                                                                                              | J <sup>*</sup> : band member; (1<br>$T_{1/2}$ : Deduced by e<br>B(E2)(W.u.)(2008<br>branching ratio.<br>J <sup><math>\pi</math></sup> : band member; (1)                                                                                                         | E2) 1/10 $\gamma$ to 3/2 .<br>valuators from experimental<br>(35t04) Coulomb Excitation and adopted<br>E2) 1870 $\gamma$ to 3/2 <sup>-</sup> .                                                                                      |  |  |  |  |
| 2182.1 <sup>&amp;</sup> 3<br>2551.8 3<br>2602.9 3<br>2668.1 <sup>&amp;</sup> 6<br>2696.9 3                                                                                   | 9/2 <sup>-</sup><br>(9/2 <sup>+</sup> )<br>(9/2 <sup>-</sup> )<br>11/2 <sup>-</sup><br>(7/2 <sup>+</sup> .9/2 <sup>+</sup> .11/ | 2+)                          | B F<br>B D F<br>B<br>F<br>B                                                                        | $J^{\pi}$ : band member; (<br>$J^{\pi}$ : E2 190 $\gamma$ from $J^{\pi}$ : from level scher<br>$J^{\pi}$ : band member; (<br>$J^{\pi}$ : log $ft > 4.6$ from                                                                                                     | M1) 470 $\gamma$ to 7/2 <sup>-</sup> .<br>13/2 <sup>+</sup> .<br>ne in <sup>69</sup> Ni $\beta$ -decay measurements (2001Fr21).<br>M1)485.9 $\gamma$ to 9/2 <sup>-</sup> .<br>(9/2 <sup>+</sup> ).                                  |  |  |  |  |
| 2742.0 7                                                                                                                                                                     | (13/2 <sup>+</sup> )                                                                                                            | 357 ns 2                     | F                                                                                                  | $\mu$ =1.46 <i>16</i><br>$\mu$ : from g factor =0                                                                                                                                                                                                                | .225 25 measured using the Time Dependant                                                                                                                                                                                           |  |  |  |  |

Continued on next page (footnotes at end of table)

#### Adopted Levels, Gammas (continued)

#### <sup>69</sup>Cu Levels (continued)

| E(level) <sup>†</sup>     | J <sup>##@</sup>         | T <sub>1/2</sub> | XR | EF | Comments                                                                                                         |  |  |
|---------------------------|--------------------------|------------------|----|----|------------------------------------------------------------------------------------------------------------------|--|--|
|                           |                          |                  |    |    | Perturbed Distribution in combination with heavy ion gamma correlation                                           |  |  |
|                           |                          |                  |    |    | technique (2002Ge16). Compiled by 2011StZZ.                                                                      |  |  |
|                           |                          |                  |    |    | $J^{n}$ : 74 $\gamma$ to 11/2 <sup>-</sup> and 189.9 $\gamma$ to (9/2 <sup>+</sup> ).                            |  |  |
|                           |                          |                  |    |    | $T_{1/2}$ : From (HI,xn $\gamma$ ) in 2002Ge16. Others: 360 ns 20 (2012Di03), 330 ns                             |  |  |
|                           |                          |                  |    |    | 80 (1999BrZS), 0.36 μs 5 (1998Gr14), and 360 ns 30 (1997Is13).                                                   |  |  |
| 2756.9 3                  | $(7/2^+, 9/2^+, 11/2^+)$ |                  | В  |    | $J^{\pi}$ : log ft >4.5 from 9/2 <sup>+</sup> .                                                                  |  |  |
| 2800.9 <i>3</i>           | $(7/2^+, 9/2^+, 11/2^+)$ |                  | В  |    | $J^{\pi}$ : log ft >4.5 from (9/2 <sup>+</sup> ).                                                                |  |  |
| 2867.8 <sup>a</sup> 9     | 11/2-                    |                  |    | F  | $J^{\pi}$ : band member; E2 996 $\gamma$ to 7/2 <sup>-</sup> .                                                   |  |  |
| 3063.7 4                  |                          |                  | В  |    |                                                                                                                  |  |  |
| 3214.5 <sup>&amp;</sup> 7 | $13/2^{(-)}$             |                  |    | F  | $J^{\pi}$ : band member.                                                                                         |  |  |
| 3483.2 <sup>a</sup> 8     | $15/2^{-}$               |                  |    | F  | $J^{\pi}$ : band member; E2 615 $\gamma$ to $11/2^{-}$ ; E1 741 $\gamma$ to $13/2^{+}$ E2 815 $\gamma$ to        |  |  |
|                           | ,                        |                  |    |    | 11/2 <sup>-</sup> .                                                                                              |  |  |
| 3692.0 13                 | $(19/2^{-})$             | 22 ns 1          |    | F  | $T_{1/2}$ : From (HI,xn $\gamma$ ).                                                                              |  |  |
|                           |                          |                  |    |    | $J^{\pi}$ : 208.8 $\gamma$ to 15/2 <sup>-</sup> .                                                                |  |  |
| 3828.0 10                 | $(17/2^+)$               | 39 ns 6          |    | F  | $T_{1/2}$ : From (HI,xn $\gamma$ ).                                                                              |  |  |
|                           |                          |                  |    |    | J <sup><math>\pi</math></sup> : Configuration= $\pi p_{3/2}\pi g_{9/2}\pi (f_{7/2}^{-1})$ suggested by 2000Is01. |  |  |

<sup>†</sup> From least-squares fit to the  $E\gamma$ 's data. In addition to the levels listed here, (d,<sup>3</sup>He) gives tentative peaks at 3000, 3300, 3700, and 3950.

<sup>‡</sup> Doublet with a spacing of less than 15 keV suggested in <sup>70</sup>Z(pol t, $\alpha$ ). Systematics suggest that these may have  $J^{\pi}=5/2^{-}$  and  $7/2^{-}$ .  $\sigma(\theta)$  cannot differentiate between these two  $J^{\pi}$  and analyzing-power data do not agree with either assignments although  $J^{\pi}=5/2^{-1}$ level appears to be more strongly populated.

- # Band member  $...\pi^2 \pi^{-1}$  is with  $\pi(p_{3/2}^2, p_{3/2}f_{5/2}, f_{5/2}^2)\pi(f_{7/2}^{-1})$  configuration. @ Band member  $...\pi v^2 v^{-2}$  is with  $\pi p_{3/2} v g_{9/2}^2 v p_{1/2}^{-2}$  configuration.

- <sup>&</sup> Band(A): Member of band  $...\pi^2\pi^{-1}$ . <sup>*a*</sup> Band(B): Member of band  $...\pi v^2v^{-2}$ .

|                              |                                                          |                                                    |                                                 |                            | <u> </u>                                                                                            | ( <sup>69</sup> Cu) |                    |                                                                                                                                                                                                                                                                  |
|------------------------------|----------------------------------------------------------|----------------------------------------------------|-------------------------------------------------|----------------------------|-----------------------------------------------------------------------------------------------------|---------------------|--------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $E_i$ (level)                | $\mathbf{J}_i^{\pi}$                                     | Eγ                                                 | $I_{\gamma}$                                    | $\mathbf{E}_{f}$           | ${ m J}_f^\pi$                                                                                      | Mult.               | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                         |
| 1096.0<br>1213.53<br>1297.91 | $\frac{1/2^{-}}{(5/2,7/2)^{-}}$<br>$(1/2^{-},3/2^{-})$   | 1096<br>1213.5 <i>1</i><br>1297.9 <i>1</i>         | 100<br>100<br>100                               | 0.0<br>0.0<br>0.0          | 3/2 <sup>-</sup><br>3/2 <sup>-</sup><br>3/2 <sup>-</sup>                                            |                     |                    | $E_{\gamma}$ : Poor fit to level energy difference.                                                                                                                                                                                                              |
| 1711.4                       | 7/2-                                                     | 1711.9 6                                           | 100                                             | 0.0                        | 3/2-                                                                                                | (E2) <sup>‡</sup>   | 0.000261 4         | $\alpha$ =0.000261 4; $\alpha$ (K)=7.57×10 <sup>-5</sup> 11; $\alpha$ (L)=7.44×10 <sup>-6</sup><br>11; $\alpha$ (M)=1.046×10 <sup>-6</sup> 15; $\alpha$ (N+)=0.0001763<br>$\alpha$ (N)=3.21×10 <sup>-8</sup> 5: $\alpha$ (IPE)=0.0001763.25                      |
| 1871.3                       | 7/2-                                                     | 657.8                                              | 4.3                                             | 1213.53                    | (5/2,7/2)-                                                                                          |                     |                    | $E_{\gamma}, I_{\gamma}$ : Not seen in $\beta$ -decay.                                                                                                                                                                                                           |
|                              |                                                          | 1872.3 8                                           | 100                                             | 0.0                        | 3/2-                                                                                                | (E2) <sup>‡</sup>   | 0.000321 5         | $\alpha = 0.000321 \ 5; \ \alpha(K) = 6.39 \times 10^{-5} \ 9; \ \alpha(L) = 6.27 \times 10^{-6} \ 9; \alpha(M) = 8.82 \times 10^{-7} \ 13; \ \alpha(N+) = 0.000250 \ 4 \alpha(N) = 2.71 \times 10^{-8} \ 4; \ \alpha(IPF) = 0.000250 \ 4 B(E2)(W.u.) = 4.7 \ 8$ |
| 2182.1                       | 9/2-                                                     | 470.7 1                                            | 100                                             | 1711.4                     | 7/2-                                                                                                | (M1) <sup>#</sup>   | 0.001128 16        | $\alpha$ =0.001128 <i>16</i> ; $\alpha$ (K)=0.001013 <i>15</i> ; $\alpha$ (L)=0.0001009<br><i>15</i> ; $\alpha$ (M)=1.419×10 <sup>-5</sup> <i>20</i><br>$\alpha$ (N)=4.33×10 <sup>-7</sup> <i>6</i>                                                              |
| 2551.8                       | (9/2+)                                                   | 680.5 <i>1</i>                                     | 100.0 23                                        | 1871.3                     | 7/2-                                                                                                | (E1) <sup>@</sup>   | 0.000258 4         | $\alpha$ =0.000258 4; $\alpha$ (K)=0.000232 4; $\alpha$ (L)=2.29×10 <sup>-5</sup> 4;<br>$\alpha$ (M)=3.21×10 <sup>-6</sup> 5; $\alpha$ (N+)=9.77×10 <sup>-8</sup> 14<br>$\alpha$ (N)=9.77×10 <sup>-8</sup> 14                                                    |
|                              |                                                          | 1336.0 7<br>2550 2                                 | 1.2 <i>5</i><br>6.1 <i>7</i>                    | 1213.53<br>0.0             | (5/2,7/2) <sup>-</sup><br>3/2 <sup>-</sup>                                                          |                     |                    | $E_{\gamma}$ : Poor fit to level energy difference.                                                                                                                                                                                                              |
| 2602.9                       | (9/2 <sup>-</sup> )                                      | 1389.5 5                                           | 100                                             | 1213.53                    | (5/2,7/2)-                                                                                          |                     |                    |                                                                                                                                                                                                                                                                  |
| 2668.1                       | 11/2-                                                    | 485.9                                              | 100                                             | 2182.1                     | 9/2-                                                                                                | (M1)#               | 0.001050 15        | $\alpha = 0.001050 \ 15; \ \alpha(\text{K}) = 0.000943 \ 14; \ \alpha(\text{L}) = 9.38 \times 10^{-5} \\ 14; \ \alpha(\text{M}) = 1.320 \times 10^{-5} \ 19; \ \alpha(\text{N}+) = 4.03 \times 10^{-7} \\ \alpha(\text{N}) = 4.03 \times 10^{-7} \ 6$            |
|                              |                                                          | 956.7                                              | 9                                               | 1711.4                     | 7/2-                                                                                                |                     |                    |                                                                                                                                                                                                                                                                  |
| 2696.9                       | $(7/2^+, 9/2^+, 11/2^+)$                                 | 1483.6 <i>4</i><br>2695 2                          | 100 <i>3</i><br>4.5 8                           | 1213.53<br>0.0             | $(5/2,7/2)^{-}$<br>$3/2^{-}$                                                                        |                     |                    |                                                                                                                                                                                                                                                                  |
| 2742.0                       | $(13/2^+)$                                               | 74.0<br>189.9                                      | 28<br>100                                       | 2668.1<br>2551.8           | $\frac{11}{2^{-}}$                                                                                  |                     |                    |                                                                                                                                                                                                                                                                  |
| 2756.9                       | (7/2 <sup>+</sup> ,9/2 <sup>+</sup> ,11/2 <sup>+</sup> ) | 154.1 <i>I</i><br>205.1 <i>I</i><br>574.9 <i>I</i> | 7.3 <i>10</i><br>100 <i>4</i><br>44.2 <i>25</i> | 2602.9<br>2551.8<br>2182.1 | $(9/2^{-})$<br>$(9/2^{-})$<br>$(9/2^{+})$<br>$9/2^{-}$                                              |                     |                    | $E_{\gamma}$ : 1988Bo06 placed this transition from a 2285.4                                                                                                                                                                                                     |
| 2800.9                       | (7/2+,9/2+,11/2+)                                        | 104.1 2<br>249.1 <i>1</i><br>1089.3 <i>4</i>       | 25 5<br>100 <i>18</i><br>21 8                   | 2696.9<br>2551.8<br>1711.4 | (7/2 <sup>+</sup> ,9/2 <sup>+</sup> ,11/2 <sup>+</sup> )<br>(9/2 <sup>+</sup> )<br>7/2 <sup>-</sup> |                     |                    | level.                                                                                                                                                                                                                                                           |
| 2867.8                       | 11/2-                                                    | 996.3                                              | 100                                             | 1871.3                     | 7/2-                                                                                                | (E2) <sup>‡</sup>   | 0.000269 4         | $\alpha$ =0.000269 4; $\alpha$ (K)=0.000242 4; $\alpha$ (L)=2.40×10 <sup>-5</sup> 4;<br>$\alpha$ (M)=3.37×10 <sup>-6</sup> 5; $\alpha$ (N+)=1.024×10 <sup>-7</sup> 15<br>$\alpha$ (N)=1.024×10 <sup>-7</sup> 15                                                  |
| 3063.7                       |                                                          | 262.8 2                                            | 100                                             | 2800.9                     | $(7/2^+, 9/2^+, 11/2^+)$                                                                            |                     |                    |                                                                                                                                                                                                                                                                  |
| 3214.5                       | $13/2^{(-)}$                                             | 546.2                                              | 100                                             | 2668.1                     | 11/2-                                                                                               |                     |                    |                                                                                                                                                                                                                                                                  |

From ENSDF

 $^{69}_{29}$ Cu $_{40}$ -3

### Adopted Levels, Gammas (continued)

# $\gamma(^{69}Cu)$ (continued)

| E <sub>i</sub> (level) | $\mathbf{J}_i^{\pi}$ | Eγ     | $I_{\gamma}$ | $\mathbf{E}_f = \mathbf{J}_f^{\pi}$ | Mult.             | $\alpha^{\dagger}$ | Comments                                                                                                                                                                                                                                                 |
|------------------------|----------------------|--------|--------------|-------------------------------------|-------------------|--------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 3214.5                 | 13/2(-)              | 1032.9 | 29           | 2182.1 9/2-                         |                   |                    |                                                                                                                                                                                                                                                          |
| 3483.2                 | $15/2^{-}$           | 268.9  | 23           | $3214.5 \ 13/2^{(-)}$               |                   |                    |                                                                                                                                                                                                                                                          |
|                        |                      | 615.3  | 100          | 2867.8 11/2-                        | (E2) <sup>‡</sup> | 0.000968 14        | $\alpha$ =0.000968 <i>14</i> ; $\alpha$ (K)=0.000868 <i>13</i> ; $\alpha$ (L)=8.71×10 <sup>-5</sup> <i>13</i> ; $\alpha$ (M)=1.222×10 <sup>-5</sup> <i>18</i> ;<br>$\alpha$ (N+)=3.65×10 <sup>-7</sup><br>$\alpha$ (N)=2.65×10 <sup>-7</sup> 6           |
|                        |                      | 741.1  | 97           | 2742.0 (13/2 <sup>+</sup> )         | (E1) <sup>@</sup> | 0.000214 3         | $\alpha(N) = 3.05 \times 10^{-6} 0^{-6}$<br>$\alpha = 0.000214 3; \ \alpha(K) = 0.000192 3; \ \alpha(L) = 1.89 \times 10^{-5} 3; \ \alpha(M) = 2.66 \times 10^{-6} 4; \ \alpha(N+) = 8.10 \times 10^{-8} 12$<br>$\alpha(N) = 8.10 \times 10^{-8} 12$     |
|                        |                      | 815.3  | 49           | 2668.1 11/2-                        | (E2) <sup>‡</sup> | 0.000445 7         | $\alpha$ =0.000445 7; $\alpha$ (K)=0.000399 6; $\alpha$ (L)=3.97×10 <sup>-5</sup> 6; $\alpha$ (M)=5.58×10 <sup>-6</sup> 8;<br>$\alpha$ (N+)=1.686×10 <sup>-7</sup> 24<br>$\alpha$ (N)=1.686×10 <sup>-7</sup> 24                                          |
| 3692.0                 | (19/2 <sup>-</sup> ) | 208.8  | 100          | 3483.2 15/2-                        | [E2]              | 0.0380             | $\alpha(K)=0.0339\ 5;\ \alpha(L)=0.00358\ 5;\ \alpha(M)=0.000499\ 7;\ \alpha(N+)=1.376\times10^{-5}\ 20$<br>$\alpha(N)=1.376\times10^{-5}\ 20$<br>B(E2)(W,u)=3.71\ 19                                                                                    |
| 3828.0                 | (17/2 <sup>+</sup> ) | 613.6  | 100          | 3214.5 13/2 <sup>(-)</sup>          | [M2]              | 0.00179 <i>3</i>   | $\alpha$ =0.00179 3; $\alpha$ (K)=0.001605 23; $\alpha$ (L)=0.0001627 23; $\alpha$ (M)=2.29×10 <sup>-5</sup> 4;<br>$\alpha$ (N+)=6.94×10 <sup>-7</sup> 10<br>$\alpha$ (N)=6.94×10 <sup>-7</sup> 10                                                       |
|                        |                      | 1085.8 | 85           | 2742.0 (13/2+)                      | [E2]              | 0.000220 3         | B(M2)(W.u.)=0.29<br>$\alpha$ =0.000220 3; $\alpha$ (K)=0.000198 3; $\alpha$ (L)=1.96×10 <sup>-5</sup> 3; $\alpha$ (M)=2.75×10 <sup>-6</sup> 4;<br>$\alpha$ (N+)=8.37×10 <sup>-8</sup> 12<br>$\alpha$ (N)=8.37×10 <sup>-8</sup> 12<br>B(E2)(W.u.)=0.00026 |

4

<sup>†</sup> Additional information 1. <sup>‡</sup>  $\Delta J=2$  from  $\gamma(\theta)$  (2000Is01),  $\Delta\pi=$ no from level scheme. <sup>#</sup>  $\Delta J=1$  from  $\gamma(\theta)$  (2000Is01),  $\Delta\pi=$ no from level scheme. <sup>@</sup>  $\Delta J=1$  from  $\gamma(\theta)$  (2000Is01),  $\Delta\pi=$ yes from level scheme.

### Adopted Levels, Gammas

### Level Scheme

Intensities: Relative photon branching from each level



## Adopted Levels, Gammas



<sup>69</sup><sub>29</sub>Cu<sub>40</sub>