

$^1\text{H}({}^{70}\text{Ni}, 2\text{p}\gamma)$  2020Lo06

| Type            | Author         | History          |                        |
|-----------------|----------------|------------------|------------------------|
|                 |                | Citation         | Literature Cutoff Date |
| Full Evaluation | C. D. Nesaraja | NDS 207,1 (2026) | 1-Apr-2023             |

**2020Lo06:**  $^{69}\text{Co}$  was studied via the (p,2p) knockout reaction and in-beam spectroscopy.  ${}^{70}\text{Ni}$  secondary beam was produced as a fragmentation product of  ${}^{235}\text{U}$  primary beam at 345 MeV/nucleon on a  ${}^9\text{Be}$  target at RIKEN. Particle separation and identification were done using the BigRIPS separator. The secondary beams were then delivered to MINOS time projection chamber (TPC) surrounding a liquid hydrogen target. The TPC was used to track the protons to reconstruct the reaction vertex used for the doppler corrections. Measured prompt gammas using the DALI2 NaI(Tl)detector array of 186 NaI(Tl) crystals. Measurements were done at angles covering  $12^\circ$  to  $96^\circ$ (lab frame). FWHM of the array was 9% for 662 keV  $\gamma$ -ray and 6% for the 1333 keV  $\gamma$ -ray. Measured  $E\gamma$ ,  $I\gamma$ ,  $\gamma\gamma$ , recoil- $\gamma$ .

 $^{69}\text{Co}$  Levels

| $E(\text{level})^\dagger$ | $J^\pi{}^\ddagger$ |
|---------------------------|--------------------|
| 0.0                       | $(7/2^-)$          |
| 1102 25                   | $(9/2^-)$          |
| 1590 8                    | $(7/2^-)$          |

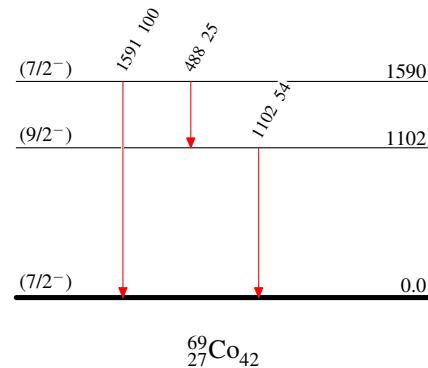
$^\dagger$  From  $E\gamma$  data.

$^\ddagger$  As proposed by [2020Lo06](#) based on comparison to shell model calculations.

 $\gamma(^{69}\text{Co})$ 

| $E_\gamma$   | $I_\gamma^\dagger$ | $E_i(\text{level})$ | $J_i^\pi$ | $E_f$ | $J_f^\pi$ | Comments                                                                     |
|--------------|--------------------|---------------------|-----------|-------|-----------|------------------------------------------------------------------------------|
| $^{x}240$ 11 | 48 6               |                     |           |       |           | measured $\tau=144$ ps 40 for this transition ( <a href="#">2020Lo06</a> ).  |
| $^{x}287$ 11 | 31 6               |                     |           |       |           | measured $\tau=271$ ps 100 for this transition ( <a href="#">2020Lo06</a> ). |
| $^{x}427$ 11 | 29 6               |                     |           |       |           | measured $\tau=78$ ps 60 for this transition ( <a href="#">2020Lo06</a> ).   |
| 488 11       | 25 6               | 1590                | $(7/2^-)$ | 1102  | $(9/2^-)$ |                                                                              |
| $^{x}662$ 20 | 15 6               |                     |           |       |           |                                                                              |
| 1102 25      | 54 8               | 1102                | $(9/2^-)$ | 0.0   | $(7/2^-)$ |                                                                              |
| $^{x}1285$ 8 | 22 8               |                     |           |       |           |                                                                              |
| 1591 8       | 100 8              | 1590                | $(7/2^-)$ | 0.0   | $(7/2^-)$ |                                                                              |

$^\dagger$  Measured for multiplicity less than or equal to 3.


$^x$   $\gamma$  ray not placed in level scheme.

$^1\text{H}({}^{70}\text{Ni},2\text{p}\gamma)$  2020Lo06

## Legend

Level SchemeIntensities: Relative  $I_\gamma$ 

- $I_\gamma < 2\% \times I_\gamma^{max}$
- $I_\gamma < 10\% \times I_\gamma^{max}$
- $I_\gamma > 10\% \times I_\gamma^{max}$

