⁶⁹Se ε decay 1988De28,1977Ma24

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	C. D. Nesaraja	NDS 115, 1 (2014)	31-Jul-2013

Parent: ⁶⁹Se: E=0.0; $J^{\pi}=1/2^-$; $T_{1/2}=27.4$ s 2; $Q(\varepsilon)=6680$ 30; $\%\varepsilon+\%\beta^+$ decay=100.0

1988De28: Measured ε delayed p, γ , and β^+ , $E\gamma$, $I\gamma$, $\gamma\gamma$ and $p\gamma$ coincidences using the recoil transport helium jet technique. Gammas detected by Ge(Li)counters with 20% efficiency. Emitted protons detected with the Si(Au) surface barrier counter. FWHM typically 18 keV for composite α source of ²³⁹Pu,²⁴¹Am, ²⁴⁴Cm. Authors assume that all the observed transitions are Gamow-Teller and conclude that the sum over all of them over an energy range of about 6.5 MeV is equal to 0.23 or 7.7% of the sum rule limit of 3.

1977Ma24: Measured ε delayed p, γ , and β^+ spectra, $E\gamma$, $I\gamma$, and $\gamma\gamma$, $\beta^+\gamma$, p γ , pX-ray and γ X-ray coincidences and α (K)exp. Other: 1973Pr12.

⁶⁹As Levels

E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	E(level) [†]	E(level)
0.0	5/2-	2872.9 10	5161 33	5879 33
98.00 4	3/2-	3031.3 4	5228 <i>33</i>	5923 <i>33</i>
164.51 6	$1/2^{-}, 3/2^{-}$	3144.5 8	5273 <i>33</i>	5950 <i>33</i>
497.30 12		3220.1 7	5314 <i>33</i>	5994 <i>33</i>
789.41 12	$1/2^{-}, 3/2^{-}$	3346.6 4	5369 <i>33</i>	6030 <i>33</i>
933.62 19		3394.6 5	5416 <i>33</i>	6081 <i>33</i>
1075.96 18		3468.9 7	5452 <i>33</i>	6136 <i>33</i>
1690.8 <i>3</i>		3651.6 10	5480 <i>33</i>	6197 <i>33</i>
1744.2 6		3999.6 7	5533 <i>33</i>	6239 <i>33</i>
1864.9 <i>3</i>		4649 <i>33</i>	5570 <i>33</i>	6273 <i>33</i>
2119.1 7		4747 <i>33</i>	5606 33	6322 <i>33</i>
2149.9 5		4871 <i>33</i>	5657 33	6387 <i>33</i>
2184.0 10		4935 <i>33</i>	5695 <i>33</i>	6485 <i>33</i>
2346.7 4		4984 <i>33</i>	5741 <i>33</i>	
2409.14 24		5050 <i>33</i>	5800 <i>33</i>	
2533.0 4		5102 33	5841 <i>33</i>	

[†] From a least-squares fit to the E γ data. Levels at 4649 and above were deduced by 1988De28 from measurements of proton energy emitted from these levels and the assumption that the proton feeding is essentially (98.6 %) to the ground state of ⁶⁸Ge. A proton separation energy of 3391 *30* keV was adopted by these authors for ⁶⁹As and a recoil correction was applied. The present S(p) value is 3420 *20*.

[‡] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	Iε [@]	Log ft	$I(\varepsilon + \beta^+)^{@}$	Comments
$(2.0 \times 10^2 5)$	6485	2.0×10 ⁻⁴ 4	5.4 3	$2.0 \times 10^{-4#} 4$	εK=0.870 4; εL=0.109 4; εM+=0.0211 8
$(2.9 \times 10^2 5)$	6387	3.0×10^{-4} 7	5.62 18	$3.0 \times 10^{-4#}$ 7	εK=0.8742 15; εL=0.1055 13; εM+=0.0203 3
$(3.6 \times 10^2 5)$	6322	$2.0 \times 10^{-4} 5$	5.97 17	$2.0 \times 10^{-4#} 5$	εK=0.8757 10; εL=0.1043 8; εM+=0.02003 18
$(4.1 \times 10^2 5)$	6273	5.0×10 ⁻⁴ 10	5.69 14	5.0×10 ^{-4#} 10	εK=0.8765 8; εL=0.1036 6; εM+=0.01989 13
$(4.4 \times 10^2 5)$	6239	2.1×10^{-4} 5	6.14 14	$2.1 \times 10^{-4#} 5$	εK=0.8769 6; εL=0.1033 5; εM+=0.01981 11
$(4.8 \times 10^2 5)$	6197	$7.0 \times 10^{-4} 20$	5.69 16	$7.0 \times 10^{-4#} 20$	εK=0.8774 5; εL=0.1029 4; εM+=0.01973 9
$(5.4 \times 10^2 5)$	6136	6.0×10 ⁻⁴ 10	5.87 11	6.0×10 ^{-4#} 10	εK=0.8779 4; εL=0.1025 4; εM+=0.01963 7
$(6.0 \times 10^2 5)$	6081	$1.0 \times 10^{-3} 2$	5.73 11	$1.0 \times 10^{-3#} 2$	εK=0.8783 4; εL=0.1021 3; εM+=0.01956 6
$(6.5 \times 10^2 5)$	6030	5.0×10^{-4} 10	6.10 11	5.0×10 ^{-4#} 10	εK=0.8786 3; εL=0.10188 22; εM+=0.01951 5

Continued on next page (footnotes at end of table)

⁶⁹Se ε decay 1988De28,1977Ma24 (continued)

ϵ, β^+ radiations (continued)

E(decay)	E(level)	$\mathrm{I}\beta^+$ [†] [@]	Ie [@]	Log ft	$I(\varepsilon + \beta^+)^{@}$	Comments
$(6.9 \times 10^2 5)$	5994		6.0×10 ⁻⁴ 10	6.07 10	6.0×10 ^{-4#} 10	εK=0.8788 3; εL=0.10173 19; εM+=0.01947 5
$(7.3 \times 10^2 5)$	5950		6.0×10 ⁻⁴ 10	6.13 10	6.0×10 ^{-4#} 10	εK=0.8790 2; εL=0.10157 17; εM+=0.01944 4
$(7.6 \times 10^2 5)$	5923		4.0×10 ⁻⁴ 10	6.33 13	4.0×10 ^{-4#} 10	εK=0.8791 2; εL=0.10147 16; εM+=0.01942 4
$(8.0 \times 10^2 5)$	5879		$1.7 \times 10^{-3} 4$	5.76 12	$1.7 \times 10^{-3#} 4$	εK=0.8793 2; εL=0.10134 14; εM+=0.01939 3
$(8.4 \times 10^2 5)$	5841		$1.7 \times 10^{-3} 4$	5.80 12	$1.7 \times 10^{-3\#} 4$	εK=0.8794 2; εL=0.10123 13; εM+=0.01936 3
$(8.8 \times 10^2 5)$	5800		2.4×10^{-3} 5	5.69 11	$2.4 \times 10^{-3\#} 5$	εK=0.8795 2; εL=0.10113 12; εM+=0.019341 25
$(9.4 \times 10^2 5)$	5741		1.4×10^{-3} 3	5.98 11	$1.4 \times 10^{-3\#} 3$	εK=0.8797 2; εL=0.1010 1; εM+=0.019312 22
$(9.9 \times 10^2 5)$	5695		$7.0 \times 10^{-4} 20$	6.32 13	$7.0 \times 10^{-4\#} 20$	εK=0.8798 1; εL=0.10090 9; εM+=0.019291 20
$(1.02 \times 10^3 5)$	5657		$2.6 \times 10^{-3} 6$	5.79 11	$2.6 \times 10^{-3 \text{#}} 6$	εK=0.8799 1; εL=0.10083 9; εM+=0.01928 2
$(1.07 \times 10^3 5)$	5606		5.0×10^{-4} 10	6.55 10	5.0×10^{-4} 10	εK=0.8800; εL=0.10075 8; εM+=0.01926 2
$(1.11 \times 10^3 5)$	5570		$1.6 \times 10^{-3} 4$	6.07 12	$1.6 \times 10^{-3#} 4$	ε K=0.8800 <i>3</i> ; ε L=0.1007 <i>1</i> ; ε M+=0.019244 <i>21</i>
$(1.15 \times 10^3 5)$	5533		1.7×10 ⁻³ 4	6.07 11	$1.7 \times 10^{-3#} 4$	εK=0.8799 7; εL=0.10061 15; εM+=0.01923 3
$(1.20 \times 10^3 5)$	5480	1.5×10 ⁻⁶ 23	0.0011 2	6.30 9	1.1×10 ^{-3#} 2	av $E\beta$ =82 <i>19</i> ; ε K=0.8790 <i>18</i> ; ε L=0.1004 <i>3</i> ; ε M+=0.01919 <i>6</i>
$(1.23 \times 10^3 5)$	5452	$3. \times 10^{-6} 4$	0.0012 3	6.28 12	1.2×10 ^{-3#} 3	av $E\beta$ =93 <i>19</i> ; ε K=0.878 <i>3</i> ; ε L=0.1003 <i>4</i> ; ε M+=0.01916 <i>7</i>
$(1.26 \times 10^3 5)$	5416	$5.\times 10^{-6} 5$	0.0011 2	6.35 9	$1.1 \times 10^{-3\#} 2$	av E β =109 19; ε K=0.876 4; ε L=0.1000 6; ε M+=0.01911 10
$(1.31 \times 10^3 5)$	5369	1.0×10 ⁻⁵ 7	0.00097 22	6.43 11	9.8×10 ^{-4#} 22	av Eβ=128 19; εK=0.872 7; εL=0.0994 8; εM+=0.01900 15
$(1.37 \times 10^3 5)$	5314	2.9×10 ⁻⁵ 17	0.0015 3	6.29 10	$1.5 \times 10^{-3#}$ 3	av Eβ=152 19; εK=0.864 10; εL=0.0985 12; εM+=0.01881 22
$(1.41 \times 10^3 5)$	5273	2.8×10 ⁻⁵ 15	0.00095 19	6.50 10	9.8×10 ^{-4#} 20	av Eβ=169 19; εK=0.855 13; εL=0.0974 15; εM+=0.0186 3
$(1.45 \times 10^3 5)$	5228	0.00016 8	0.0036 8	5.95 10	3.8×10 ^{-3#} 8	av Eβ=188 19; εK=0.842 16; εL=0.0960 19; εM+=0.0183 4
$(1.52 \times 10^3 5)$	5161	0.00017 7	0.0022 5	6.20 10	2.4×10 ^{-3#} 5	av Eβ=216 19; εK=0.818 21; εL=0.0931 24; εM+=0.0178 5
$(1.58 \times 10^3 5)$	5102	0.00018 6	0.0015 4	6.40 11	1.7×10 ^{-3#} 4	av Eβ=241 19; εK=0.790 25; εL=0.090 3; εM+=0.0172 6
$(1.63 \times 10^3 5)$	5050	0.00015 4	0.00095 18	6.63 9	$1.1 \times 10^{-3\#} 2$	av E β =263 19; ε K=0.76 3; ε L=0.086 4; ε M+=0.0165 7
$(1.70 \times 10^3 5)$	4984	0.00019 5	0.00081 17	6.73 10	$1.0 \times 10^{-3\#} 2$	av E β =292 20; ε K=0.72 4; ε L=0.082 4; ε M+=0.0156 7
$(1.75 \times 10^3 5)$	4935	0.00056 16	0.0019 5	6.38 12	$2.5 \times 10^{-3\#} 6$	av Eβ=313 20; εK=0.68 4; εL=0.078 4; εM+=0.0148 8
$(1.81 \times 10^3 5)$	4871	0.00027 8	0.00070 18	6.86 12	9.7×10 ^{-4#} 24	av E β =340 20; ε K=0.63 4; ε L=0.072 4; ε M+=0.0138 8
$(1.93 \times 10^3 5)$	4747	0.00089 25	0.0014 4	6.61 <i>13</i>	$2.3 \times 10^{-3\#} 6$	av E β =394 20; ε K=0.54 4; ε L=0.061 4; ε M+=0.0117 8
$(2.03 \times 10^3 5)$	4649	0.0011 3	0.0012 3	6.72 11	2.3×10 ^{-3#} 5	av E β =437 20; ε K=0.47 4; ε L=0.053 4; ε M+=0.0101 8
$(2.68 \times 10^3 \ 3)$	3999.6	0.21 4	0.048 10	5.36 9	0.26 [‡] 5	av E β =728 14; ε K=0.163 8; ε L=0.0184 9; ε M+=0.00352 17
$(3.03 \times 10^3 \ 3)$	3651.6	0.10 3	0.012 3	6.06 13	0.11 [‡] 3	av E β =888 14; ε K=0.098 5; ε L=0.0111 5; ε M+=0.00212 9
$(3.21 \times 10^3 \ 3)$	3468.9	0.19 4	0.018 4	5.94 9	0.21 [‡] 4	av E β =973 14; ε K=0.077 3; ε L=0.0087 4; ε M+=0.00166 7
$(3.29 \times 10^3 \ 3)$	3394.6	0.40 7	0.034 7	5.69 9	0.43 [‡] 8	av Eβ=1007 14; εK=0.070 3; εL=0.0079 3;

Continued on next page (footnotes at end of table)

E(decay)

 $(3.33 \times 10^3 \ 3)$

 $(3.46 \times 10^3 \ 3)$

E(level)

3346.6

3220.1

⁶⁹ Se s decav	1988De28 1977Ma24 (continued)
St c uttay	1)00DC20,1)77711224 (Continueu)

ϵ, β^+ radiations (continued) Ie[@] Iβ⁺ †@ $I(\varepsilon + \beta^+)^{@}$ Comments Log ft €M+=0.00151 6 0.53[‡] 7 av Eβ=1029 14; εK=0.0662 25; εL=0.0075 3; 0.49 6 0.040 5 5.63 7 εM +=0.00143 6 0.30[‡] 7 5.98 11 0.019 5 av Eβ=1089 14; εK=0.0569 21; εL=0.00643 23; $0.28 \ 7$ $\epsilon M + = 0.00123.5$

						EWI+-0.00125 5
$(3.54 \times 10^3 \ 3)$	3144.5	0.89 13	0.056 9	5.54 7	0.95 [‡] 14	av Eβ=1124 14; εK=0.0521 19; εL=0.00589 21; εM+=0.00112 4
$(3.65 \times 10^3 \ 3)$	3031.3	0.94 18	0.052 10	5.60 9	0.99 [‡] 19	av E β =1177 15; ε K=0.0459 16; ε L=0.00519 18; ε M+=0.00099 4
$(3.81 \times 10^3 \ 3)$	2872.9	1.14 18	0.052 9	5.63 8	1.19 [‡] <i>19</i>	av E β =1252 15; ε K=0.0388 13; ε L=0.00438 14; ε M+=0.00084 3
$(4.15 \times 10^3 \ 3)$	2533.0	2.1 3	0.069 10	5.58 7	2.2 [‡] 3	av Eβ=1413 15; εK=0.0278 8; εL=0.00314 9; εM+=0.000598 17
$(4.27 \times 10^3 \ 3)$	2409.14	6.1 7	0.18 2	5.20 6	6.3 [‡] 7	av Eβ=1471 15; εK=0.0248 7; εL=0.00280 8; εM+=0.000534 15
$(4.33 \times 10^3 \ 3)$	2346.7	1.7 3	0.045 8	5.81 8	1.7 [‡] 3	av E β =1501 15; ε K=0.0235 7; ε L=0.00265 8; ε M+=0.000505 14
$(4.50 \times 10^3 \ 3)$	2184.0	0.33 9	0.0079 21	6.60 12	0.34 [‡] 9	av E β =1579 15; ε K=0.0204 6; ε L=0.00230 6; ε M+=0.000439 12
$(4.53 \times 10^3 \ 3)$	2149.9	3.3 4	0.076 9	5.62 6	3.4 [‡] 4	av E β =1595 15; ε K=0.0198 5; ε L=0.00224 6; ε M+=0.000427 11
$(4.56 \times 10^3 \ 3)$	2119.1	1.7 9	0.037 20	5.94 23	1.7 [‡] 9	av Eβ=1610 15; εK=0.0193 5; εL=0.00218 6; εM+=0.000416 11
$(4.82 \times 10^3 \ 3)$	1864.9	7.9 9	0.14 2	5.40 6	8.0 [‡] 9	av E β =1732 15; ε K=0.0158 4; ε L=0.00178 5; ε M+=0.000340 8
$(4.94 \times 10^3 \ 3)$	1744.2	1.8 5	0.029 8	6.11 <i>13</i>	1.8 [‡] 5	av Eβ=1790 15; εK=0.0144 4; εL=0.00162 4; εM+=0.000310 7
$(4.99 \times 10^3 \ 3)$	1690.8	3.1 4	0.050 6	5.88 6	3.2 [‡] 4	av Eβ=1815 15; εK=0.0138 4; εL=0.00156 4; εM+=0.000298 7
$(5.60 \times 10^3 \ 3)$	1075.96	0.9 9	0.009 9	6.7 5	0.9 [‡] 9	av E β =2112 15; ε K=0.00906 18; ε L=0.001022 20; ε M+=0.000195 4
$(5.75 \times 10^3 \ 3)$	933.62	0.9 5	0.008 5	6.78 25	0.9 [‡] 5	av E β =2181 15; ε K=0.00828 16; ε L=0.000934 18; ε M+=0.000178 4
(5.89×10 ³ 3)	789.41	22.7 25	0.197 22	5.44 5	22.9 [‡] 25	av E β =2251 <i>15</i> ; ε K=0.00758 <i>14</i> ; ε L=0.000855 <i>16</i> ; ε M+=0.000163 <i>3</i> E(decay): 5006 <i>75</i> from the end point of the β^+ spectrum in coincidence with the 691 γ (1977Ma24)
$(6.18 \times 10^3 \ 3)$	497.30	0.8 7	0.006 5	7.0 4	0.8 [‡] 7	av E β =2392 15; ε K=0.00639 11; ε L=0.000720 13; ε M+=0.0001373 2
$(6.52 \times 10^3 \ 3)$	164.51	32 4	0.19 2	5.53 6	32 [‡] 4	av Eβ=2554 15; εK=0.00532 9; εL=0.000599 10; εM+=0.0001142 1
$(6.58 \times 10^3 \ 3)$	98.00	97	0.05 4	6.1 4	9 [‡] 7	av Eβ=2587 15; εK=0.00513 9; εL=0.000578 10; εM+=0.0001103 1

[†] From intensity balance.

[‡] From intensity imbalances. No direct measurements of the g.s. branch have been made. From a measurement of the annihilation radiation, 1977Ma24 deduce a g.s. branch of 19% *12*, and 1988De28 using their revised decay scheme and the annihilation measurement of 1977Ma24 deduce a g.s. branch of 22% *10*. Both authors assume $J^{\pi}(^{69}$ Se g.s.)=3/2⁻. See 1989Ar13 for a discussion of this feeding. With $J^{\pi}(^{69}$ Se g.s.) established as 1/2⁻, any decay to the 5/2⁻ g.s. will be negligible (an expected log *ft*)

⁶⁹Se ε decay **1988De28,1977Ma24** (continued)

ε, β^+ radiations (continued)

> 12.8 gives $I_{\varepsilon+\beta_+}$ <3 x10⁻⁶ %. The evaluator has revised the decay scheme so that the g.s. feeding is zero. The I γ normalization now is 0.85 5 compared with 0.78 *10* for a g.s. branch of 22% *10*, and the log *ft* values for the excited levels are slightly smaller. No changes in J^{π} assignments for the ⁶⁹As levels are necessary.

[#] From the delayed proton spectrum (1988De28).

[@] Absolute intensity per 100 decays.

$\gamma(^{69}\text{As})$

I γ normalization: From $\Sigma I(\gamma + ce) = 0$.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	${ m J}_f^\pi$	Mult.	α ^{&}	Comments
66.50 5	37.6 18	164.51	1/2-,3/2-	98.00	3/2-	(M1) [@]	0.36 8	α (K)exp=0.32 7
97.99 <i>4</i>	100	98.00	3/2-	0.0	5/2-	(M1) [@]	0.07 6	$\alpha(K) \exp = 0.065$
291.9 3	2.7 3	789.41	1/2-,3/2-	497.30	,			
332.7 2	1.6 2	497.30		164.51	$1/2^{-}, 3/2^{-}$			
399.3 2	5.3 3	497.30		98.00	3/2-			I_{γ} : taken from 1977Ma24; contaminated γ in 1998De28.
497.5 <i>3</i>	1.6 2	497.30		0.0	5/2-			
625.0 <i>3</i>	3.8 4	789.41	1/2-,3/2-	164.51	1/2-,3/2-			
^x 637.1 [‡] 2	3.2 [‡] 5							
691.5 2	25.5 19	789.41	1/2-,3/2-	98.00	3/2-			
789.4 2	6.1 8	789.41	1/2-,3/2-	0.0	5/2-			
835.7 2	2.7 4	933.62		98.00	3/2-			
911.2 4	1.6 8	1075.96		164.51	$1/2^{-}, 3/2^{-}$			
978.1 2	2.3 5	1075.96		98.00	3/2-			
1075.8 10	4.4 6	1864.9		789.41	$1/2^{-},3/2^{-}$			
$x1202.3^{\text{#}} 10$	0.4 [#] 1							
1329.6 9	1.5 10	2119.1		789.41	1/2-,3/2-			
1360.9 8	1.7 2	2149.9		789.41	$1/2^{-},3/2^{-}$			
^x 1394.5 [‡] 7	1.4 [‡] 2							
1456.9 5	1.7 3	2533.0		1075.96				
1475.7 3	1.7 3	2409.14		933.62				
1526.5 [‡] 5	1.2 [‡] 3	1690.8		164.51	1/2-,3/2-			
1557.2 4	1.2 2	2346.7		789.41	$1/2^{-}, 3/2^{-}$			
x1562.9 7	0.4 1							
1592.6 4	1.2 2	1690.8		98.00	3/2-			
1620.0 15	2.4 4	2409.14		/89.41	1/2, $3/2$			
1640.4 10	1.4.3	1/44.2		98.00	3/2			
1600.0.6	1.4 3	2149.9		497.30	5/2-			
1700 2 4	174	1864.9		164 51	$1/2^{-} 3/2^{-}$			
1744.1 7	0.7 2	1744.2		0.0	$5/2^{-}$			
1766.8 4	2.6 4	1864.9		98.00	3/2-			
1849.4 8	0.8 2	2346.7		497.30	- /			
1866.0 10	0.7 1	1864.9		0.0	5/2-			
1912.3 6	1.2 4	2409.14		497.30				
1956.2 7	0.7 2	3031.3		1075.96				
2051.4 7	0.9 2	2149.9		98.00	3/2-			
2069.1 10	0.4 1	3144.5		1075.96				
2086.0 10	0.4 1	2184.0		98.00	3/2-			
2119.2 10	0.5 1	2119.1		0.0	$3/2^{-}$			
2244.6 3	0.8 2	2409.14		164.51	1/2 ,3/2			

Continued on next page (footnotes at end of table)

⁶⁹Se ε decay **1988De28,1977Ma24** (continued)

$\gamma(^{69}\text{As})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E _i (level)	$J_i^{\pi} = E_f$	J_f^π	E_{γ}^{\dagger}	$I_{\gamma}^{\dagger a}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}
2310.2 5	1.3 2	2409.14	98.	00 3/2-	3122.0 7	0.35 7	3220.1		98.00	3/2-
2368.6 10	0.7 1	2533.0	164.	51 1/2-,3/2-	3181.9 5	0.32 5	3346.6		164.51	$1/2^{-}, 3/2^{-}$
2375.6 10	1.4 2	2872.9	497.	30	3230.0 5	0.50 8	3394.6		164.51	$1/2^{-}, 3/2^{-}$
2435.0 5	0.20 5	2533.0	98.	00 3/2-	3248.7 7	0.30 5	3346.6		98.00	3/2-
2866.5 5	0.16 4	3031.3	164.	51 1/2 ⁻ ,3/2 ⁻	3304.3 7	0.25 4	3468.9		164.51	$1/2^{-}, 3/2^{-}$
2932.4 10	0.30 6	3031.3	98.	00 3/2-	3487.0 10	0.13 3	3651.6		164.51	$1/2^{-}, 3/2^{-}$
3045.9 10	0.72 10	3144.5	98.	00 3/2-	3835.0 7	0.30 5	3999.6		164.51	1/2-,3/2-

[†] Weighted average data from 1988De28 and 1977Ma24, unless indicated otherwise.

[‡] From 1977Ma24. Not reported by 1988De28.

[#] From 1988De28. Not reported by 1977Ma24.

[@] $\alpha(K)$ exp consistent with multi E1 or M1. $\Delta \pi$ from decay scheme.

& Calculated from $\alpha(K)\exp$ and $\alpha(K)/\alpha$. $\alpha(K)\exp$ have been recalculated from the values given by 1977Ma24 using the fluorescent yield from 1972Bb16.

^{*a*} For absolute intensity per 100 decays, multiply by 0.85 5.

 $x \gamma$ ray not placed in level scheme.

⁶⁹Se ε decay 1988De28,1977Ma24

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

Legend

$\gamma > 10\% imes \mathrm{I}_{\gamma}^{max}$	_1	/2- 0.0	$\frac{0}{27.4 \text{ s} 2}$	
Coincidence	$\%\epsilon + \%\beta^+ = 100$	Qε=6680 30		
		690-		
		34Se35		
	1.	$\underline{^{\mathrm{I}eta^+}}$	<u>Ιε</u>	Log ft
	6485		0.00020	5.4
	6387		0.00030	5.62
	6322		0.00020	5.97 5.69
	6239		0.00030	6.14
	6197		0.00070	5.69
	6136		0.00060	5.87
	6030		0.0010	5.73
	5994		0.00060	6.07
	5950		0.00060	6.13
/	5923		0.00040	6.33
/	5841		0.0017	5.76
	5800		0.0024	5.69
/	5741		0.0014	5.98
	5657		0.00070	6.32 5.70
	5606		0.0020	6.55
	5570		0.0016	6.07
	5533	1.510-6	0.0017	6.07
	5452	1.5×10^{-6} 3 × 10 ⁻⁶	0.0011	6.30 6.28
	5416	$5. \times 10^{-6}$	0.0011	6.35
	5369	$1.0 imes 10^{-5}$	0.00097	6.43
	5314	0.000029	0.0015	6.29
	5228	0.000028	0.00095	6.50 5.95
	5161	0.00017	0.0022	6.20
	5102	0.00018	0.0015	6.40
		0.00015	0.00095	6.63
	4935	0.00019	0.00081	6.38
	4871	0.00027	0.00070	6.86
		0.00089	0.0014	6.61
	3999.6	0.0011	0.0012	6.72 5.36
	3651.6	0.10	0.012	6.06
		0.19	0.012	5.94
	3394.6	0.40	0.034	5.69
	3346.6	0.49	0.040	5.63
	3220.1	0.28	0.019	5.98
	/			
	//			
$\frac{1/2^-, 3/2^-}{2/2^-}$	164.51	32	0.19	5.53
512	98.00 /	9	0.05	6.1
5/2-	0.0			

⁶⁹₃₃As₃₆-7

 ${}^{69}_{33}{\rm As}_{36}$

7

⁶⁹Se ε decay 1988De28,1977Ma24

Decay Scheme (continued)

⁶⁹₃₃As₃₆