⁶⁸Cu β⁻ decay (30.9 s) 1972Sw01,1975Ti01

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	E. A. Mccutchan	NDS 113, 1735 (2012)	1-Mar-2012				

Parent: ⁶⁸Cu: E=0.0; J^π=1⁺; T_{1/2}=30.9 s 6; Q(β⁻)=4439.8 18; %β⁻ decay=100.0
1975Ti01: ⁶⁸Cu activity produced by ⁶⁸Zn(n,p), E(n)=14.9 MeV. Measured Eγ, Iγ, and T_{1/2} using Ge(Li) detector.
1972Sw01: ⁶⁸Cu activity produced by ⁶⁸Zn(n,p), E(n)=14.7 MeV. Measured Eγ, Iγ, Eβ⁻, Iβ⁻, T_{1/2}, γγ and βγ coin using Ge(Li) and NaI(Tl) detectors and a plastic scintillator.

Data are taken mainly from 1972Sw01 and 1975Ti01.

Others: 2002Ko31, 1971Si19, 1969Wa22, 1969Va16, 1964Ba13, 1960Yt03.

The decay scheme given here is based on the equilibrium decay of the 3.75-min 68 Cu isomer which proceeds 86% via IT decay and subsequent decay of the 30.9-s g.s. to 68 Zn. This branching fraction includes a correction for the different $T_{1/2}$ of the two

branches. Included here are only those γ 's which decay with a composite 30.9-s and 3.75-min half-life and their associated levels. α : Additional information 1.

⁶⁸Zn Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	$J^{\pi \ddagger}$
0	0^{+}	stable	2339.5 8	2+	2821.4 16	2+
1077.7 5	2^{+}		2370.6 16		3186.7 12	$(1,2^+)$
1655.9 <i>10</i>	0^{+}		2510.5 16		3490.3 22	
1884.3 9	2^{+}		2753.4 16	3-		

[†] From a least-squares fit to the $E\gamma$'s by evaluator.

[‡] From the Adopted Levels.

β^{-} radiations

E(decay)†	E(level)	Iβ ^{−‡@}	Log ft	Comments
(949 3)	3490.3	1.0 3	4.50 13	av E β =340.6 12
(1253.1 22)	3186.7	2.4 5	4.58 9	av E β =471.61 96
(1618.4 24)	2821.4	1.7 4	5.18 11	av E β =635.2 11
(1686.4 ^{&} 24)	2753.4	< 0.5	>5.8	av E β =666.1 11
(1929.3 ^{&} 24)	2510.5	0.3 3	6.2 5	av Eβ=777.8 12
(2069.2 ^{&} 24)	2370.6	0.35 17	6.30 22	av E β =842.7 12
(2100.3 20)	2339.5	16.0 12	4.67 4	av $E\beta = 857.23\ 92$
				E(decay): 2200 200 (1972Sw01).
(2555.5 20)	1884.3	2.7 11	5.80 18	av E β =1071.12 96
				E(decay): 2700 200 (1972Sw01).
(2783.9 21)	1655.9	1.2 7	6.3 <i>3</i>	av Eβ=1179.47 98
(3362.1 19)	1077.7	38 4	5.16 5	av $E\beta = 1455.84~90$
				E(decay): 3500 100 (1972Sw01).
(4439.8 18)	0	33 [#] 4	5.76 6	av Eβ=1975.89 88 E(decay): 4600 50 (1972Sw01), 4600 (1971Si19), 4600 100 (1969Wa22), and 4580 60 (1964Ba13).

[†] Experimentally measured values from $\beta\gamma$ coincidences are included in the comments.

[‡] From I_{γ} imbalances in ⁶⁸Cu β^- decay (30.9 s + 3.75 min) in equilibrium. Branches to low-spin states are assumed to be from the 30.9-s parent state.

[#] Others: 31.4% 41 from γ intensities and 28.0% 42 from comparison with β^- in coincidence with 1077 γ (1972Sw01); 37% (1971Si19).

68 Cu β^- decay (30.9 s) 1972Sw01,1975Ti01 (continued)

β^{-} radiations (continued)

[@] Absolute intensity per 100 decays.

[&] Existence of this branch is questionable.

 $\gamma(^{68}\text{Zn})$

I γ normalization: From $\Sigma(I\gamma+ce)$ (from ^{68m}Cu IT decay to ⁶⁸Cu g.s.)=100. With I γ (525.9 γ)=100, I γ 's give 114.5 18 decays which then undergo β^- decay (30.9 s). For additional unplaced γ 's, see ⁶⁸Cu β decay (3.75 min).

E_{γ}^{\dagger}	I_{γ}	E_i (level)	\mathbf{J}_i^{π}	E_f J	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{\#}$	α	Comments
577.8 10	2.4 7	1655.9	0+	1077.7 2	2+	E2		0.001277 19	$\begin{array}{l} \alpha = 0.001277 \ 19; \\ \alpha(K) = 0.001143 \ 17; \\ \alpha(L) = 0.0001164 \ 18; \\ \alpha(M) = 1.665 \times 10^{-5} \ 25 \\ \alpha(N+) = 6.52 \times 10^{-7} \ 10 \end{array}$
736.9 <i>15</i> 806.9 <i>10</i>	1.2 <i>3</i> 0.8 <i>7</i>	3490.3 1884.3	2+	2753.4 3 1077.7 2	3- 2+ :	M1+E2	-1.55 5	0.000469 7	$\begin{aligned} &\alpha = 0.000469 \ 7; \ \alpha(\text{K}) = 0.000421 \\ &7; \ \alpha(\text{L}) = 4.23 \times 10^{-5} \ 7; \\ &\alpha(\text{M}) = 6.06 \times 10^{-6} \ 9; \\ &\alpha(\text{N}+) = 2.42 \times 10^{-7} \ 4 \end{aligned}$
1077.7 5	70 [@] 4	1077.7	2+	0 ()+ :	E2		0.000247 4	$\alpha = 0.000247 \ 4; \ \alpha(K) = 0.000221 4; \ \alpha(L) = 2.22 \times 10^{-5} \ 4; \alpha(M) = 3.17 \times 10^{-6} \ 5; \alpha(N+) = 1.272 \times 10^{-7} \ 18$
1261.8 8	16.6 [@] 12	2339.5	2+	1077.7 2	2+ :	M1+E2	-0.18 4	0.0001727 25	$\alpha = 0.0001727 \ 25;$ $\alpha(K) = 0.0001418 \ 20;$ $\alpha(L) = 1.410 \times 10^{-5} \ 20;$ $\alpha(M) = 2.02 \times 10^{-6} \ 3$ $\alpha(N) = 8.10 \times 10^{-8} \ 12$
1292.9 <i>15</i>	0.4 [@] 2	2370.6		1077.7 2	2+				<i>a</i> (117 <i>)</i> =0.19×10 12
1432.8 <i>15</i> <i>x</i> 1438 1 <i>15</i>	0.3 [@] 3	2510.5		1077.7 2	2+				
1529.7 15	1.0 3	3186.7	$(1,2^+)$	1655.9 (0^{+}				
1675.7 <i>15</i>	1.8 [@] 5	2753.4	3-	1077.7 2	2+	[E1]		0.000446 7	$\alpha = 0.000446 7;$ $\alpha(K) = 4.65 \times 10^{-5} 7;$ $\alpha(L) = 4.60 \times 10^{-6} 7;$ $\alpha(M) = 6.59 \times 10^{-7} 10;$ $\alpha(N+) = 0.000395 6$
1743.7 15	2.0 [@] 4	2821.4	2+	1077.7 2	2+ 1	M1+E2	+0.27 5	0.000241 4	$ \begin{array}{l} \alpha = 0.000241 \ 4; \\ \alpha({\rm K}) = 7.71 \times 10^{-5} \ 11; \\ \alpha({\rm L}) = 7.64 \times 10^{-6} \ 11; \\ \alpha({\rm M}) = 1.095 \times 10^{-6} \ 16; \\ \alpha({\rm N}+) = 0.0001550 \end{array} $
x1791.2 <i>15</i> 1883.8 <i>15</i>	2.3 11	1884.3	2+	0 0)+	(E2)		0.000333 5	$\alpha = 0.000333 5;$ $\alpha(K) = 6.96 \times 10^{-5} 10;$ $\alpha(L) = 6.91 \times 10^{-6} 10;$ $\alpha(M) = 9.90 \times 10^{-7} 14;$ $\alpha(N+) = 0.000255 4$

⁶⁸Cu $β^-$ decay (30.9 s) 1972Sw01,1975Ti01 (continued)

γ (⁶⁸ Zn) (continued)								
E_{γ}^{\dagger}	Ι _γ ‡&	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	α	Comments
2110.1 <i>15</i> 2339.5 <i>15</i>	1.8 5 1.7 [@] 6	3186.7 2339.5	(1,2 ⁺) 2 ⁺	1077.7 0	2 ⁺ 0 ⁺	(E2)	0.000529 8	α =0.000529 8; α (K)=4.71×10 ⁻⁵ 7; α (L)=4.66×10 ⁻⁶ 7; α (M)=6.68×10 ⁻⁷ 10; α (N+)=0.000477 7

[†] From 1975Ti01. Transition with $E\gamma$ =570.7 reported by 1972Sw01 is not confirmed by 1975Ti01 and is not adopted here.

[‡] Weighted average of 1975Ti01 and 1972Sw01, relative to $I\gamma(525.9\gamma)=100$ in ⁶⁸Cu IT decay. Taken or calculated from $I\gamma$'s observed in the equilibrium decay: ⁶⁸Cu β^- decay (30.9 s + 3.75 min) using branching fraction. Full separation of $I\gamma$'s associated with 30.9 s and 3.75 min β^- decays was not possible with the data available. $I\gamma$'s are listed here for only those γ 's which decay with a composite 30.9-s and 3.75-min half-life.

[#] From the Adopted Gammas.

^(a) Intensity deduced by evaluator based on equilibrium decay intensities for ⁶⁸Cu β^- decay (30.9 s + 3.75 min), branching fraction and assumptions on feeding.

[&] For absolute intensity per 100 decays, multiply by 0.873 14.

 $x \gamma$ ray not placed in level scheme.

⁶⁸Cu β^- decay (30.9 s) 1972Sw01,1975Ti01

Decay Scheme

