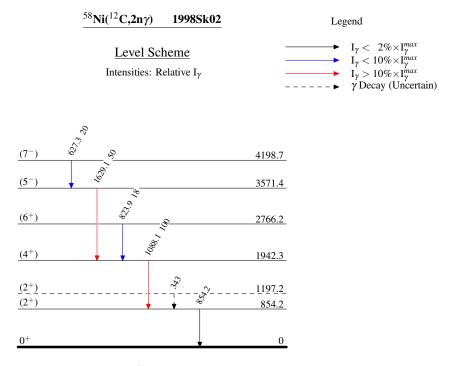
58 Ni(12 C,2n γ) 1998Sk02

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	E. A. Mccutchan	NDS 113, 1735 (2012)	1-Mar-2012					

 $E(^{12}C) = 40$ MeV on 99.8% enriched ⁵⁸Ni foil. Measured E γ , I γ , $\gamma\gamma$ using 6 EUROBALL Cluster detectors in close geometry with back-catcher BGO crystals. Some results also presented in 1998SkZZ.

⁶⁸Se Levels

E(level) [†]	J ^π ‡
0	0^{+}
854.2 <i>3</i>	(2^{+})
1197.2?	(2^{+})
1942.3 9	(4^{+})
2766.2 12	(6^{+})
3571.4 12	(5 ⁻)
4198.7 <i>13</i>	(7^{-})


 † From least-squares fit to $E\gamma's$ by evaluator.

[‡] Suggested from systematics of neighboring even-even nuclei.

 $\gamma(^{68}Se)$

Eγ	I_{γ}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Comments
343†‡		1197.2?	(2+)	854.2 (2+)	No coincidence observed between 343γ and 1088γ ; coincidence between 343γ and 854γ could not be established.
627.3 6	20 11	4198.7	(7-)	3571.4 (5-)	I_{γ} : from spectrum gated on 854 γ and 1088 γ .
823.9 [†] 8	18 11	2766.2	(6^{+})	1942.3 (4+)	I_{γ} : from spectrum gated on 854 γ and 1088 γ .
854.2 <i>3</i>		854.2	(2^{+})	$0 0^+$	
1088.1 9	100 17	1942.3	(4^{+})	854.2 (2 ⁺)	I_{γ} : from spectrum gated on 854 γ .
1629.1 7	50 25	3571.4	(5 ⁻)	1942.3 (4+)	I_{γ} : from spectrum gated on 854 γ .

[†] Not reported by 2000Fi08 in ¹²C(⁵⁸Ni, $2n\gamma$). 1990Li25 observed a 343 γ in ⁶⁸Se recoil-gated spectrum in ¹²C(⁵⁸Ni, $2n\gamma$). [‡] Placement of transition in the level scheme is uncertain.

⁶⁸₃₄Se₃₄