⁶⁸As ε decay (151.6 s) 1977Pa13

History								
Туре	Author	Citation	Literature Cutoff Date					
Full Evaluation	E. A. Mccutchan	NDS 113, 1735 (2012)	1-Mar-2012					

Parent: ⁶⁸As: E=0.0; $J^{\pi}=3^+$; $T_{1/2}=151.6 \text{ s} \ 8$; $Q(\varepsilon)=8084 \ 3$; $\mathscr{K}\varepsilon+\mathscr{K}\beta^+$ decay=100.0 1977Pa13: ⁶⁸As from ⁵⁸Ni(¹²C,pn) at 32,42 MeV. Measured E γ , $I\gamma$, $E\beta^+$, $\gamma\gamma$ and $\beta^+\gamma$ coincidences, and $T_{1/2}$ using a Ge(Li) detector (FWHM=2.5 keV at 1.3 MeV) and a NE102 plastic scintillator. See also 1976PaZY. 1971Pa32: ⁶⁸As from ⁷⁰Ge(p,3n) at 40 MeV. Measured E γ , I γ , $\gamma\gamma$ and T_{1/2} with Ge(Li) (FWHM=2.5 keV at 1.3 MeV), LEPS

and NaI(Tl) detectors.

 α : Additional information 1.

 α : Additional information 2.

 α : Additional information 3.

⁶⁸Ge Levels

 ε, β^+ radiations

E(level) [†]	$J^{\pi \ddagger}$						
0.0	0^{+}	2457.7 7	2^{+}	3087.8 5	$2^{(+)}$	3809.7 10	2^{+}
1016.23 22	2+	2649.4 10	3-	3288.0 7	$2^{(+)}$	4238.9 10	(2^{+})
1754.8 4	0^{+}	2830.9 4	4+	3400.8 4	$2^{(+)}$	4567.9 10	(2^{+})
1778.15 23	2+	2947.9 5	2+	3417.9 5		4878.5 14	
2268.6 4	4+	3023.6 5	2^{+}	3475.1 10			
2429.5 3	3+	3041.5 <i>3</i>	(4^{+})	3522.5 10	2+		

 † From a least squares fit to Ey by evaluator.

[‡] From Adopted Levels.

E(decay)#	E(level)	Iβ+ †@	$\mathrm{I}\varepsilon^{\dagger @}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger @}$	Comments
(3206 3)	4878.5	0.14 7	0.012 6	6.82 24	0.15 8	av $E\beta$ =969.2 16; ε K=0.0695 3; ε L=0.00779 4; ε M+=0.001460 7
(3516 3)	4567.9	0.4 1	0.02 1	6.64 11	0.4 1	av $\mathcal{E}\beta$ =1114.2 15; ε K=0.04755 18; ε L=0.005329 20; ε M+=0.000999 4
(3845 3)	4238.9	0.14 8	0.006 3	7.30 24	0.15 8	av E β =1269.1 <i>15</i> ; ϵ K=0.03323 <i>11</i> ; ϵ L=0.003723 <i>13</i> ; ϵ M+=0.0006975 2
(4274 3)	3809.7	1.2 1	0.030 3	6.67 4	1.2 1	av $E\beta = 1472.7 \ 15; \ \varepsilon K = 0.02199 \ 7; \ \varepsilon L = 0.002463 \ 7; \ \varepsilon M + = 0.0004614 \ 1$
(4562 3)	3522.5	1.4 <i>1</i>	0.027 2	6.77 4	1.4 1	E _β = 5010 140 (197/Pa15). av E _β =1609.8 16; εK=0.01717 5; εL=0.001922 5; εM+=0.0003600 1
(4609 3)	3475.1	4.9 8	0.094 15	6.24 7	5.0 8	$E\beta^{*}=3510\ 110\ (1977Pa13).$ av $E\beta=1632.5\ 16;\ \varepsilon K=0.01651\ 5;\ \varepsilon L=0.001848\ 5;$ $\varepsilon M=0.0003462\ 9$
(4666 3)	3417.9	2.7 1	0.048 2	6.540 17	2.7 1	av $E\beta$ =1659.9 <i>15</i> ; ε K=0.01576 <i>4</i> ; ε L=0.001764 <i>5</i> ; ε M+=0.0003305 <i>9</i>
(4683 3)	3400.8	6.2 3	0.11 1	6.181 <i>21</i>	6.3 3	av E β =1668.1 <i>15</i> ; ε K=0.01555 <i>4</i> ; ε L=0.001740 <i>5</i> ; ε M+=0.0003259 <i>8</i>
						$E\beta^+=3580\ 80\ (1977Pa13)$, weighted average of 3495 167 and 3605 86.
(4796 3)	3288.0	1.1 <i>1</i>	0.018 2	7.00 4	1.1 <i>I</i>	av $E\beta$ =1722.2 15; ε K=0.01422 4; ε L=0.001592 4; ε M+=0.0002981 8
(4996 3)	3087.8	3.0 2	0.042 3	6.66 <i>3</i>	3.0 2	av $E\beta = 1818.4 \ 15$; $\varepsilon K = 0.01222 \ 3$; $\varepsilon L = 0.001367 \ 3$; $\varepsilon M + -0.0002561 \ 6$
(5043 3)	3041.5	15.1 6	0.205 8	5.979 18	15.3 6	av E β =1840.6 15; ε K=0.01181 3; ε L=0.001321 3;

Continued on next page (footnotes at end of table)

${}^{68}_{32}\text{Ge}_{36}$ -1

$^{68}\text{As}\,\varepsilon$ decay (151.6 s) 1977Pa13 (continued)

ϵ, β^+ radiations (continued)

E(decay)#	E(level)	$I\beta^+$ †@	$\mathrm{I}\varepsilon^{\dagger @}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger @}$	Comments
(5060 3)	3023.6	3.9 <i>3</i>	0.053 4	6.57 4	4.0 3	εM +=0.0002475 6 E β^+ =3950 70 (1977Pa13), weighted average of 3855 204, 3885 280, 3929 108, and 3998 92. av E β =1849.3 15; εK =0.01166 3; εL =0.001304 3; εM +=0.0002443 6 E β^+ =3680 180 (1977Pa13), weighted average of
(5136 3)	2947.9	0.92 8	0.012 1	7.24 4	0.93 8	3645 242 and 3720 279. av E β =1885.7 15; εK=0.011037 24; εL=0.001235
(5253 3)	2830.9	3.30 22	0.038 <i>3</i>	6.74 <i>3</i>	3.34 22	3; εM +=0.0002313 5 av E β =1942.1 15; εK =0.010164 22; εL =0.0011370
(5435 3)	2649.4	0.90 11	0.0093 11	7.39 6	0.91 11	2; εM +=0.0002130 5 av E β =2029.8 <i>16</i> ; εK =0.008983 <i>19</i> ; εL =0.0010048
(5626 3)	2457.7	3.5 8	0.031 7	6.89 10	3.5 8	2; εM +=0.0001882 4 av E β =2122.6 15; εK =0.007926 16; εL =0.0008865
(5655 3)	2429.5	36.0 20	0.320 18	5.885 24	36.3 20	<i>i</i> ; $\varepsilon M \neq = 0.00016014$ av E $\beta = 2136.2$ <i>15</i> ; $\varepsilon K = 0.007785$ <i>15</i> ; $\varepsilon L = 0.0008707$
(5815 3)	2268.6	3.1 4	0.025 3	7.02 6	3.1 4	av $E\beta = 2214.2$ 15; $\varepsilon K = 0.007041$ 13; $\varepsilon L = 0.0007874$
(6306 3)	1778.15	73	0.04 2	6.86 19	73	$\mu_{1} \in \mathbb{R}^{3} = 2452.6 \ 15; \ \varepsilon K = 0.005285 \ 9; \ \varepsilon L = 0.0005909$
(6329 3)	1754.8	< 0.2	< 0.001	>8.4	< 0.2	av $E\beta$ =2464.0 15; ε K=0.005217 9; ε L=0.0005833
(7068 3)	1016.23	4.0 22	0.016 9	7.38 24	4.0 22	<i>i</i> ; ε M+=0.00010925 av E β =2824.5 <i>15</i> ; ε K=0.003554 <i>6</i> ; ε L=0.0003973 <i>6</i> ; ε M+=7.440×10 ⁻⁵ <i>11</i>

[†] From I(ε + β ⁺) and theoretical β ⁺/ ε ratios.

[±] From I(γ +ce) imbalance at each level and assuming no direct feeding of the g.s.

[#] Experimental values from $\beta^+\gamma$ coincidence β^+ endpoint energy measurements (1977Pa13) are given in the comments.

[@] Absolute intensity per 100 decays.

$\gamma(^{68}\text{Ge})$

I γ normalization: From total I(γ +c.e.)(g.s.)=100% (direct ε feeding to the ground state is not expected (Δ J=3)). Systematics of log *ft* values for Δ J=3 with no parity change give a lower limit of 13 (1973Ra10). Based on this limit, the ε branch to the g.s. would have an intensity less than 2×10⁻⁵%.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α	Comments
(190.3 10)	1.5 2	2457.7	2+	2268.6 4+	[E2]		0.0669 17	$\alpha(K)=0.0592 \ 15; \ \alpha(L)=0.00669 \ 17; \ \alpha(M)=0.000992 \ 25; \ \alpha(N+)=5.81\times10^{-5} \ 14 \ E_{\gamma}, I_{\gamma}: \text{ from the Adopted Gammas} and I_{\gamma}(702\gamma)=0.9 \ 1$
(403.8 10)	0.056 8	2830.9	4+	2429.5 3+				E_{γ}, I_{γ} : from the Adopted Gammas and $I_{\gamma}(1053\gamma)=2.3$ 2.
(564.0 10)	0.156 19	2830.9	4+	2268.6 4+				E_{γ} , I_{γ} : from the Adopted Gammas and $I_{\gamma}(1053\gamma)=2.3$ 2.
612.0 3	12.5 7	3041.5	(4^{+})	2429.5 3+	M1+E2	+0.24 4	0.000906 15	α =0.000906 <i>15</i> ; α (K)=0.000810 <i>13</i> ;

⁶⁸As ε decay (151.6 s) 1977Pa13 (continued)

$\gamma(^{68}\text{Ge})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger}\&$	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α	Comments
651.2 <i>3</i>	41.2 <i>21</i>	2429.5	3+	1778.15 2+	M1+E2	+0.06 2	0.000772 11	$\begin{array}{l} \alpha(\text{L})=8.31\times10^{-5}\ 14;\\ \alpha(\text{M})=1.242\times10^{-5}\ 21;\\ \alpha(\text{N}+)=8.16\times10^{-7}\\ \alpha=0.000772\ 11;\ \alpha(\text{K})=0.000690\\ 10;\ \alpha(\text{L})=7.07\times10^{-5}\ 10;\\ \alpha(\text{M})=1.056\times10^{-5}\ 15; \end{array}$
702.9 10	0.9 1	2457.7	2+	1754.8 0+	[E2]		0.000869 13	$\alpha(N+)=6.96 \times 10^{-7}$ $\alpha=0.000869 \ 13; \ \alpha(K)=0.000776$ $12; \ \alpha(L)=8.04 \times 10^{-5} \ 12;$ $\alpha(M)=1.199 \times 10^{-5} \ 18;$
738.4 5	3.9 <i>3</i>	1754.8	0+	1016.23 2+	E2		0.000760 11	$\alpha(N+)=7.75\times10^{-7}$ $\alpha=0.000760 \ 11; \ \alpha(K)=0.000679$ $10; \ \alpha(L)=7.03\times10^{-5} \ 10;$ $\alpha(M)=1.048\times10^{-5} \ 15;$
761.8 <i>3</i>	43.3 23	1778.15	2+	1016.23 2+	M1+E2	-0.15 3	0.000552 8	$\alpha(N+)=6.78\times10^{-7}$ $\alpha=0.000552 \ 8; \ \alpha(K)=0.000493 \ 7;$ $\alpha(L)=5.04\times10^{-5} \ 8;$ $\alpha(M)=7.53\times10^{-6} \ 11;$
(871.2 2)	0.069 6	2649.4	3-	1778.15 2+	[E1]		0.000201 3	α (N+)=4.97×10 ⁻⁷ 7 α =0.000201 3; α (K)=0.000180 3; α (L)=1.82×10 ⁻⁵ 3; α (M)=2.72×10 ⁻⁶ 4; α (N+)=1.781×10 ⁻⁷ 25 E _{γ} ,I _{γ} : from the Adopted Gammas and I γ (1633 γ)=1.3 <i>I</i> .
988.3 <i>5</i> 1016.1 <i>3</i>	1.3 <i>I</i> 100	3417.9 1016.23	2+	2429.5 3 ⁺ 0.0 0 ⁺	E2		0.000341 5	$\alpha = 0.000341 \ 5; \ \alpha(K) = 0.000304 \ 5; \alpha(L) = 3.12 \times 10^{-5} \ 5; \alpha(M) = 4.66 \times 10^{-6} \ 7;$
1052.7 5	2.3 2	2830.9	4+	1778.15 2+	E2		0.000314 5	$\alpha(N+)=3.04\times10^{-7} 5$ $\alpha=0.000314 5; \alpha(K)=0.000280 4;$ $\alpha(L)=2.87\times10^{-5} 4;$ $\alpha(M)=4.28\times10^{-6} 6;$ $\alpha(N+)=2.80\times10^{-7} 4$
1169.7 <i>5</i> 1245.1 <i>10</i> 1252.4 <i>3</i>	1.2 <i>I</i> 0.6 <i>I</i> 5.8 <i>4</i>	2947.9 3023.6 2268.6	2+ 2+ 4+	1778.15 2 ⁺ 1778.15 2 ⁺ 1016.23 2 ⁺	E2		0.000230 4	α =0.000230 4; α (K)=0.000190 3; α (L)=1.94×10 ⁻⁵ 3; α (M)=2.89×10 ⁻⁶ 4; α (N+)=1.79×10 ⁻⁵ 3
1263.4 <i>3</i> 1309.6 <i>10</i> 1332.8 <i>5</i>	6.6 <i>4</i> 0.7 <i>1</i> 1.5 <i>1</i>	3041.5 3087.8 3087.8	(4^+) $2^{(+)}$ $2^{(+)}$	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$				$\alpha(10+)=1.79\times 10$
1413.3 5	19.6 10	2429.5		1016.23 2+	M1+E2	+0.16 8	0.000200 3	α =0.000200 3; α (K)=0.0001396 20; α (L)=1.415×10 ⁻⁵ 20; α (M)=2.11×10 ⁻⁶ 3 α (N+)=4.42×10 ⁻⁵ 7
(1441.0 10)	0.69 13	2457.7	2 ⁺	1016.23 2+				E_{γ}, I_{γ} : from the Adopted Gammas and $I_{\gamma}(702\gamma)=0.9 I$.
1622.5 <i>5</i> 1633.2 <i>10</i>	5.4 <i>3</i> 1.3 <i>1</i>	3400.8 2649.4	2 ⁽⁺⁾ 3 ⁻	$\begin{array}{cccc} 1778.15 & 2^{+} \\ 1016.23 & 2^{+} \end{array}$	E1+M2	+0.09 3	0.000423 6	α =0.000423 6; α (K)=5.91×10 ⁻⁵ 13; α (L)=5.96×10 ⁻⁶ 13;

Continued on next page (footnotes at end of table)

 E_{γ}^{\dagger}

2457.6 10

2458.8 10

2506.2 10

2793.4 10

 $x_{3058}^{@}$ 3

3088.3 10

3222.6 10

3288.4 10

3401.3 10

3551.6 10

⁶⁸As ε decay (151.6 s) 1977Pa13 (continued) $\gamma(^{68}\text{Ge})$ (continued) $I_{\nu}^{\dagger \&}$ Mult.[‡] E_i(level) \mathbf{J}_i^{π} \mathbf{E}_{f} \mathbf{J}_{f}^{π} α Comments $\alpha(M)=8.89\times10^{-7}$ 19; $\alpha(N+..)=0.000357$ 6 2.2 1 1778.15 2+ 1639.9 7 3417.9 $2^{(+)}$ 1645.9 10 1.3 1 3400.8 1754.8 0+ $\alpha = 0.000310$ 5; $\alpha(K) = 9.35 \times 10^{-5}$ 13; 0.000310 5 1778.1 3 25.8 15 1778.15 2^{+} 0.0 0^{+} E2 α (L)=9.48×10⁻⁶ 14; α (M)=1.414×10⁻⁶ 20 α (N+..)=0.000205 3 α =0.000323 5; α (K)=9.00×10⁻⁵ 13; 1814.7 5 1.8 2 2830.9 4^{+} 1016.23 2+ E2 0.000323 5 α (L)=9.11×10⁻⁶ 13; α (M)=1.360×10⁻⁶ 19 α (N+..)=0.000222 4 2^+ 1016.23 2+ 2007.4 5 4.6 4 3023.6 (4^{+}) 1016.23 2+ 2025.3 10 0.7 1 3041.5 2071.8 10 $2^{(+)}$ 0.4 1 3087.8 1016.23 2+ 2229.0 10 0.2 1 4878.5 2649.4 3- $2^{(+)}$ 2271.3 10 1.0 1 3288.0 1016.23 2+ $2^{(+)}$ $1.2 \ l$ 2384.6 10 3400.8 1016.23 2+

0.000591 9 α =0.000591 9; α (K)=5.21×10⁻⁵ 8; $\alpha(L)=5.26\times10^{-6} 8$; $\alpha(M)=7.84\times10^{-7} 11$; α(N+..)=0.000533 8

[†] From 1977Pa13, except where noted otherwise. I γ normalized to I γ (1016 γ)=100.

[‡] From Adopted Gammas.

[#] Doublet components derived from $\gamma\gamma$ data (1977Pa13).

2457.7

3475.1

3522.5

3809.7

3087.8

4238.9

3288.0

3400.8

4567.9

 2^{+}

 2^{+}

 2^{+}

 $2^{(+)}$

 (2^{+})

 $2^{(+)}$

 $2^{(+)}$

 (2^{+})

0.0 0+

1016.23 2+

1016.23 2+

1016.23 2+

1016.23 2+

1016.23 2+

 $0.0 \quad 0^+$

 $0.0 \quad 0^+$

 $0.0 \quad 0^+$

[E2]

[@] Reported only by 1971Pa32.

[&] For absolute intensity per 100 decays, multiply by 0.774 11.

 $x \gamma$ ray not placed in level scheme.

1.3[#] 10

6.5[#] 10

1.8 1

1.6 *1* 1.1[@] 2

1.3 1

0.2 1

0.4 1

0.3 1

0.5 1

 $^{68}_{32}\text{Ge}_{36}\text{-}5$

⁶⁸As ε decay (151.6 s) 1977Pa13

