⁵⁴Fe(¹⁶O,pnγ),⁵⁸Ni(¹²C,pnγ) 1997Ba24

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	E. A. Mccutchan	NDS 113, 1735 (2012)	1-Mar-2012				

1997Ba24:⁵⁴Fe(¹⁶O,pn γ), E(¹⁶O)=42-63 MeV. Measured E γ , I γ , $\gamma\gamma$ and γ -n coincidences, relative excitation function, $\gamma(\theta)$ and γ linear polarization using HPGe detectors, a NE213 liquid scintillator and two-crystal Ge(HP) polarimeter. Evaluator assumes this work generally supersedes previous results presented by the same authors in 1987Ba81 (⁵⁸Ni(¹²C,pn γ), E(¹²C)=30-42 MeV and ⁵⁴Fe(¹⁶O,pn γ), E(¹⁶O)=40-52 MeV), 1989Ba87 (⁵⁶Fe(¹⁴N,2n γ), E(¹⁴N)=42 MeV), and 1994Ba96 (⁵⁴Fe(¹⁶O,pn γ), E(¹⁶O)=45-63 MeV and ⁵⁸Ni(¹²C,pn γ), E(¹²C)=32-45 MeV).

1996Pe04: ⁵⁶Fe(¹⁴N,2n γ), E(¹⁴N)=46 MeV; ⁵⁸Ni(¹²C,pn γ), E(¹²C)=36,42, and 45 MeV; and ⁴⁶Ti(²⁵Mg,p2n γ), E(²⁵Mg)=68 MeV. Measured E γ , I γ , $\gamma\gamma$, and γ yield using a HPGe γ -X and a Ge(Li) detector for the (¹⁴N,2n γ) and (¹²C,pn γ) reactions and an array of 19 Compton-suppressed Ge detectors for the (²⁵Mg,p2n γ) reaction.

1986RaZU: ⁵⁴Fe(¹⁶O,pn γ), ⁵⁸Ni(¹²C,pn γ) (beam energy not stated). Measured T_{1/2} and g-factor of 2158 isomeric state. Others: 1976PaZY (E(¹⁶O)=41 MeV, E(¹²C)=32 MeV).

⁶⁸As Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0.0	3+		
158.14 7	3+		J^{π} : assigned (4 ⁺) in 1996Pe04.
160.80 10	$2^{(+)}$		
214.20 8	(2.4^{-})		
313.24 11	3+		
354.6 5	1^{+}		
363.4 <i>3</i>	1+		
424.34 23	1+		
549.75 7	3-		J^{π} : assigned (5 ⁺) in 1996Pe04.
582.60 20	(1)		-
733.57 17	$(3,5^{-})$		
893.29 9	4-		J^{π} : assigned (6 ⁺) in 1996Pe04.
964.91 12	3-		J^{π} : assigned (7 ⁺) in 1996Pe04 based on excitation function.
1214.22 22	(4,5)		
1303.66 15	(5)		J^{π} : assigned >7 by 1996Pe04 based on excitation function.
1323.03 15	(4)		
1427.68 22	2-		
1762.1 5			
1956.6 3			
2057.7 5			
2094.01 21	(6)	27	0.02.2
2158.01 17	(6)	37 ns	g=0.25 2
			$1_{1/2}$: from 1980 ka2U.
			g: Trom IDPAD (2011StZz, 1980RaZU).
2201 5 5			J : assigned >7 by 1990re04 based on excitation function.
2301.5 5	(7.8)		
2474.05	(7,0)		
2932.7" 7			
2939.7 " 6			
3170.8 [#] 5			
3183.9 [#] 5			
3183.9" 5			

[†] From a least-squares fit to $E\gamma$, by evaluator. $\Delta E=0.5$ keV assumed when not explicitly stated.

[‡] From $\gamma(\theta)$, linear polarization, and excitation functions in 1997Ba24. Discrepancies with 1996Pe04 are indicated in the comments.

Reported only in 1996Pe04.

				⁵⁴ Fe(¹⁶ O,pnγ), ⁵⁸ Ni(¹² C,pnγ) 1997Ba24 (c			continued)	
$\gamma(^{68}As)$								
${\rm E_{\gamma}}^{\dagger}$	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult. [@]	$\delta^{@}$	Comments	
49.8 5 56.1 3 63.8 2	0.3 2 0.5 2 2.6 6	363.4 214.20 2158.01	1^+ (2,4 ⁻) (6)	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	D+Q	-0.4 1	I_{γ} : Other: 1.1. A ₂ =+0.10 4; A ₄ =-0.12 4.	
7161	70 3 20	064.01	2-	803 20 1-		10.00.3	I_{γ} : Other: 2.6.	
71.07	10.5 20	904.91	5	693.29 4	D∓Q	+0.09 5	$A_2 = -0.19$ 5, $A_4 = +0.04$ 4. I_{γ} : Other: 80. $\alpha(\exp)=0.24$ 5 (1997Ba24) from intensity imbalance. δ : Other: <0.16 from $\alpha(\exp)$.	
104.5 5 111.1 2	3.8 <i>10</i> 7.1 <i>15</i>	1427.68 424.34	2 ⁻ 1 ⁺	1323.03 (4) 313.24 3 ⁺	E2+M3	+0.86 15	A ₂ =-0.099 <i>12</i> ; A ₄ =-0.001 <i>10</i> . Mult.: $\alpha(\exp)=0.43$ <i>10</i> in ⁶⁸ Se ε decay and comparison to RUL gives E2. Evaluator notes that RUL excludes such a large admixture of M3.	
155.1 <i>I</i> 158.1 <i>I</i>	3.0 5 100	313.24 158.14	3+ 3+	158.14 3 ⁺ 0.0 3 ⁺	D+Q M1+E2	-0.07 2 -1.3 +5-16	A ₂ =+0.21 5; A ₄ =+0.04 4. A ₂ =-0.157 14; A ₄ =-0.045 17. $\alpha(\exp)=0.10 \ 3 \ (1989Ba37)$ from intensity imbalance. δ : from $\alpha(\exp)$. Other: -7.87 28 from $\gamma(\theta)$ (1997Ba24).	
160.0 160.8 <i>1</i>	0.6 <i>3</i> 6.3 <i>4</i>	893.29 160.80	$4 2^{(+)}$	$(33.5)^{-}(3,5)^{-}$	D+Q	-1.5 3	$A_2 = +0.45 4$; $A_4 = +0.06 5$.	
183.6 <i>4</i> 193.8 <i>5</i>	2.4 <i>10</i> 1.4 <i>4</i>	733.57 354.6	$(3,5^{-})$ 1 ⁺	$\begin{array}{ccc} 549.75 & 3^{-} \\ 160.80 & 2^{(+)} \end{array}$	D+Q		δ : +0.5 or +4.5.	
202.6 4	3.9 9	363.4	1+	160.80 2 ⁽⁺⁾	D+Q		$A_2 = -0.29 5; A_4 = -0.00 5.$ $\delta: +0.5 \text{ or } +6.0.$	
205.6.4	122	262 1	1+	158 14 2+	-		$A_2 = -0.36 8; A_4 = +0.03 3.$	
203.0 4 214.1 <i>I</i>	41.5 6	214.20	(2,4 ⁻)	$0.0 3^+$	D+Q	+0.21 5	$A_2 = +0.058 \ 12; \ A_4 = +0.03 \ 4.$	
231.7 4	2.8 5	964.91	3-	733.57 (3,5 ⁻)	D+Q	-1.54 30	$A_2 = +0.21$ 3; $A_4 = +0.04$ 3.	
236.4 <i>4</i> 249.6 <i>3</i> 313.1 <i>3</i> 316.6 <i>3</i>	3.3 5 2.5 9 13.0 <i>10</i> 9.1 9	549.75 1214.22 313.24 2474.6	3 ⁻ (4,5) 3 ⁺ (7,8)	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	M1+E2	-0.067 15	Pol=+0.21 10. A_2 =-0.111 20; A_4 =+0.100 18. Pol= 0.40 13	
320.4 <i>4</i> 335.4 <i>1</i>	2.1 7 16.8 5	1214.22 549.75	(4,5) 3 ⁻	893.29 4 ⁻ 214.20 (2,4 ⁻)			Fol=-0.49 15. I_{γ} : Other: 8.8. $A_2=+0.44$ 5; $A_4=+0.06$ 6. $A_2=+0.06$ 7; $A_4=+0.18$ 8. Pol=-0.20 18. I_{γ} : Other: 7.8.	
338.8 1	63.2 7	1303.66	(5)	964.91 3-	(Q)	-7.43 50	$A_2 = +0.15 4$; $A_4 = +0.05 5$.	
343.4 1	40.4 7	893.29	4-	549.75 3-	M1+E2	+0.35 15	P_{γ} . Other: 35. POL=-0.52 5.	
358.1 <i>1</i>	30.6 8	1323.03	(4)	964.91 3-	D+Q	-3.50 49	$A_2 = -0.29 4$; $A_4 = +0.25 4$.	
391.5 <i>1</i>	30.1 7	549.75	3-	158.14 3+	E1(+M2)	+0.004 7	$A_2 = +0.25$ 3; $A_4 = +0.021$ 19. Pol=-0.33 5.	
415.3 2	5.0 7	964.91	3-	549.75 3-	M1+E2	-0.85 25	P_{0} = +0.27 7.	
439.1 5	4.6 9	1762.1		1323.03 (4)			I_{γ} . Other: 7.1.	

Continued on next page (footnotes at end of table)

54 Fe(16 O,pn γ), 58 Ni(12 C,pn γ) 1997Ba24 (continued)

					γ	(⁶⁸ As) (con	tinued)	
${\rm E_{\gamma}}^{\dagger}$	I_{γ} ‡	E _i (level)	\mathbf{J}_i^{π}	E_f	${ m J}_f^\pi$	Mult.@	$\delta^{@}$	Comments
462.8 2	10.6 10	1427.68	2-	964.91	3-	M1+E2	+0.04 2	$A_2 = -0.23 4$; $A_4 = +0.03 4$. Pol=-0.17 5. I_{v} : Other: 12.8.
465.1 [#]		2939.7		2474.6	(7,8)			,
480.5 5	1.8 5	1214.22	(4,5)	733.57	(3,5 ⁻)			
519.5 2	14.6 <i>10</i>	733.57	(3,5 ⁻)	214.20	(2,4 ⁻)	D+Q	-1.5 3	$A_2 = -0.64 \ 4; A_4 = +0.07 \ 4.$ Pol=+0.25 6. I_{γ} : Other: 10.7.
549.9 <i>1</i>	11.4 8	549.75	3-	0.0	3+	E1+M2	-0.16 8	\dot{A}_2 =+0.076 15; A_4 =+0.021 24. Pol=-0.14 4. I_{γ} : Other: 8.9.
582.6 2	4.9 10	582.60	(1)	0.0	3+			7
630.0 4	<3.8	2057.7		1427.68	2-			
634.0 4	9.1 15	1956.6		1323.03	(4)			
679.7 5	2.8 10	893.29	4-	214.20	$(2,4^{-})$			
735.2 1	57.0 5	893.29	4-	158.14	3+	E1+M2	-5.5 3	$A_2 = -0.192 \ 21; A_4 = +0.10 \ 3.$ Pol=-0.23 5. I_{v} : Other: 60.
770.6 <i>3</i>	6.1 10	2094.01	(6)	1323.03	(4)			7
790.3 <i>3</i>	8.3 9	2094.01	(6)	1303.66	(5)			$A_2 = +0.22 5; A_4 = +0.21 6.$ I_{γ} : Other: 4.2.
^x 801.2 5	9.3 15							
^x 803.4 5	8.0 13							
854.4 1	21.8 5	2158.01	(6)	1303.66	(5)			$A_2 = +0.03 \ 3; A_4 = -0.02 \ 3.$ I_{γ} : Other: 20.
875.0 [#]		2932.7		2057.7				
943.6 5	3.9 9	2158.01	(6)	1214.22	(4,5)			
978.5 <i>5</i>	4.1 9	2301.5		1323.03	(4)			
991.0 [#]		1956.6		964.91	3-			
1012.8 <mark>#</mark>		3170.8		2158.01	(6)			
1025.9#		3183.9		2158.01	(6)			
x1036.9.5	8.0.13	5105.7		2120.01				
^x 1039.5 5	9.3 15							

[†] From 1997Ba24, except where noted otherwise.

[‡] From 1997Ba24, normalized to $I\gamma(158\gamma)=100$. I γ values from the ⁴⁶Ti(²⁵Mg,p2n γ) reaction at E(²⁵Mg)=68 MeV from 1996Pe04 are given in the comments, when available.

[#] From 1996Pe04; not reported by 1997Ba24.

^(a) From $\gamma(\theta)$ and linear polarization, except where noted. δ values depend on the assumed spin assignments of the levels involved, and as such, only those transitions where the spin assignments agree with those in the Adopted Levels have the δ values been included in the adopted gammas.

 $x \gamma$ ray not placed in level scheme.

⁵⁴Fe(¹⁶O,pnγ),⁵⁸Ni(¹²C,pnγ) 1997Ba24

 $^{68}_{33} As_{35}$

 $^{68}_{33} As_{35}$