⁶⁷Ga ε decay 2005Ya01,1978Me10

	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Huo Junde, Huang Xiaolong, J. K. Tuli	NDS 106, 159 (2005)	1-Apr-2005	

Parent: ⁶⁷Ga: E=0.0; $J^{\pi}=3/2^{-}$; $T_{1/2}=3.2617$ d 5; $Q(\varepsilon)=1000.8$ 12; % ε decay=100.0

2005Ya01: measured emission probabilities of K x ray and γ rays, Si(Li).

2000Si03: measured E γ , I γ , K x- γ coin. deduced ε branching ratio to the ground state and emission probabilities of 93keV γ ray. 4 π (Liquid Scintillation)e, X- γ coincidence.

1991HiZZ: measured E γ , I γ , T_{1/2}, 4 π pressurized proportional counter coincidence counting.

1990Me15: measured $E\gamma$, $I\gamma$ using various detectors.

1988Be55: measured probability of K-capture with K x-ray- γ coincidences.

1978Me10: measured $E\gamma$, $I\gamma$, $T_{1/2}$.

1966Fr12, 1969Li04: measured α .

1973Ba54: measured $\gamma\gamma(\theta)$.

The decay scheme is based on the data of 1991HiZZ, 1990Me15, 1978Me10, 1966Fr12, and 1973Ba54. Others: 1975Ro25, 1972Le37, 1972En08, 1971Su18, 1971Sh36, 1971Re01, 1969Bo41, 1968Li02, and 1974RoZD.

⁶⁷Zn Levels

E(level) [‡]	$J^{\pi \dagger}$	T _{1/2}	Comments
0.0	$5/2^{-}$	stable	
93.310 5	1/2-	9.07 μs 4	T _{1/2} : from Adopted Levels.
184.576 6	$3/2^{-}$	1.04 ns 2	g=+0.33 4 (1969Bo41)
			g: Others: +0.25 8 (1968Li02), +0.23 8 (1971Re01).
			$T_{1/2}$: unweighted average of 1.06 ns 4 (1975Ro25) and 1.026 ns 14 (1972En08).
393.527 7	$3/2^{-}$	<0.1 ns	T _{1/2} : from 1974RoZD, 1975Ro25.
887.693 9	$5/2^{-}$		

[†] From Adopted Levels.

^{\ddagger} From a least-squares fit to the E γ data.

ε radiations

E(decay)	E(level)	$\mathrm{I}\varepsilon^{\dagger\ddagger}$	Log ft	Comments
(113.1 12)	887.693	0.281 4	5.646 12	εK=0.8682 2; εL=0.11154 18; εM+=0.02021 4
(607.3 12)	393.527	23.6 <i>3</i>	5.239 6	ε K=0.8826; ε L=0.09964; ε M+=0.01778
(816.2 12)	184.576	22.71 9	5.5153 22	εK=0.8833; εL=0.09901; εM+=0.01765
(907.5 12)	93.310	52.5 11	5.244 10	εK=0.8836; εL=0.09882; εM+=0.01761
(1000.8 12)	0.0	0.9 9	7.1 5	ε K=0.8837; ε L=0.09867; ε M+=0.01758

[†] From γ -ray intensity balance at each level.

[‡] Absolute intensity per 100 decays.

⁶⁷Ga ε decay 2005Ya01,1978Me10 (continued)

$\gamma(^{67}\text{Zn})$

I γ normalization: From absolute γ intensities per 100 decays obtained in 1991HiZZ and 2005Ya01. E γ =604.44,814.7 5,979 *1* reported by 1978Me10 are not seen by the same author in a later work (1990Me15) or by 1991HiZZ and are considered spurious. The I γ in 1990Me15 are consistent with the data of 1991HiZZ used in this evaluation.

E_{γ}^{\dagger}	Ι _γ ‡@	E _i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	$\alpha^{\&}$	Comments
91.265 5	3.11 4	184.576	3/2-	93.310	1/2-	M1+E2	+0.06 5	0.083 8	α (K)exp=0.066 <i>10</i> (1969Li04) α (K)=0.073 <i>7</i> ; α (L)=0.0076 <i>8</i> δ_{1} from 1975Tb01
93.310 5	38.81 <i>3</i>	93.310	1/2-	0.0	5/2-	E2		0.87	$\alpha(K) = 0.751 23; \alpha(L) = 0.092 3$
184.576 <i>10</i>	21.41 <i>I</i>	184.576	3/2-	0.0	5/2-	M1+E2	0.38 8	0.019 3	$\alpha(K)=0.75125, \alpha(E)=0.0523$ $\alpha(K)=0.016923;$ $\alpha(L)=0.00183$ $\alpha(K)=0.015811;$ $\alpha(L)=0.0016512$ δ : from $\alpha(K)=x+\alpha(L1)=x=1.72\times10^{-2}10(1966Fr12).$ Probability of K-capture=0.89 4 (1988Be55); assuming a coefficient of K-fluorescence=0.4307 (1972Bb16).
208.950 10	2.46 1	393.527	3/2-	184.576	3/2-	M1+E2	0.035 21	0.0091 <i>1</i>	$\begin{array}{l} \alpha = 0.0091 \ I; \ \alpha(\text{K}) = 0.00804 \ 6; \\ \alpha(\text{L}) = 0.00082 \ I \\ \alpha(\text{K}) \exp = 0.0075 \ 7(1966\text{Fr}12) \\ \alpha(\text{K}) = 0.00804 \ 6; \\ \alpha(\text{L}) = 0.00802 \\ \delta; \ from \ 1973\text{Ba54}. \end{array}$
300.217 10	16.64 <i>12</i>	393.527	3/2-	93.310	1/2-	M1+E2	-0.18 1	0.00395 3	α =0.00395 3; α (K)=0.00348 2; α (L)=0.00035 α (K)exp=0.0034 3(1966Fr12) δ ; from 1973Ba54.
393.527 10	4.56 24	393.527	3/2-	0.0	5/2-	M1+E2	0.043 10	0.00196	α =0.00196; α (K)=0.00173; α (L)=0.00017 α (K)exp=0.00192 15(1966Fr12) δ : from 1973Ba54. Probability of K-capture=0.88 3 (1988Be55); assuming a coefficient of K-fluorescence=0.430 7 (1972Bb16).
494.166 <i>15</i>	0.0684 14	887.693	5/2-	393.527	3/2-	M1+E2	0.14 3	0.00117 <i>1</i>	α =0.00117 <i>I</i> ; α (K)=0.00104 <i>I</i> ; α (L)=0.00010 α (K)exp=0.0019 <i>I</i> 5(1966Fr12) δ : from 1978L 006
703.106 <i>15</i>	0.0105 9	887.693	5/2-	184.576	3/2-			0.00063 11	α =0.00063 <i>11</i> ; α (K)=0.00056 <i>10</i> δ : =-0.09 28 or +8.0 <i>18</i> for (M1+E2).

			6	67 Ga ε de	cay	2005Ya01,1	978Me10 (0	continued)	
					2	$\gamma(^{67}Zn)$ (cont	inued)		
E_{γ}^{\dagger}	Ι _γ ‡@	E _i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	Mult. [#]	$\delta^{\#}$	α &	Comments
794.381 <i>15</i>	0.0540 18	887.693	5/2-	93.310	1/2-	E2(+M3)	0.04 4	0.00053 1	α =0.00053 <i>1</i> ; α (K)=0.00047 <i>1</i> Additional information 1.
887.688 15	0.148 3	887.693	5/2-	0.0	5/2-	M1+E2	+0.96 9	0.00036	δ: from 1978Lo06. α = 0.00036; α(K) = 0.00032 α(K) exp = 0.00034 7(1966Fr12) δ: from 1978Lo06.

[†] From 1978Me10 with a correction factor of 2000He14. [‡] From absolute intensities of 2005Ya01 below 400keV and of 1991HiZZ normalized at γ (93.31keV) by 2005Ya01 above 400keV.

From adopted gammas.

[@] Absolute intensity per 100 decays.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁶⁷Ga ε decay 2005Ya01,1978Me10

Decay Scheme

⁶⁷₃₀Zn₃₇