Adopted Levels, Gammas

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh	ENSDF	18-March-2022			

 $Q(\beta^{-}) = -14050 SY; S(n) = 12990 SY; S(p) = 1840 70; Q(\alpha) = -2080 80$ 2021Wa16

Estimated uncertainties (2021Wa16): 310 for $Q(\beta^{-})$, 210 for S(n).

Q(e)=10010 70, Q(\varepsilon p)=7740 70, S(2n)=29700 310 (syst), S(2p)=4680 70 (2021Wa16).

1994Ba50: ⁶⁷Se produced in Zr(p,X),E=600 MeV at ISOLDE-CERN. Measured $T_{1/2}$ and $E\gamma$ from decay of ⁶⁷Se to ⁶⁷As.

1995Bl23: ⁶⁷Se produced in Ni(⁷⁸Kr,X),E=73 MeV/nucleon at the SISSI/LISE facility of GANIL. Measured half-life of decay of ⁶⁷Se and β^+ -delayed protons.

Additional information 1.

2002Lo13 (also 2002B117): from the same experimental group at GANIL as 1995B123 using the same reaction to produce 67 Se. Measured $T_{1/2}$ of 67 Se decay.

2005St29 (also 2005St34): ⁶⁷Se isotope produced in the fragmentation of 140 MeV/nucleon ⁷⁸Kr beam with ⁹Be target at NSCL-MSU facility, with secondary fragments unambiguously identified after separation in the A1900 fragment separator.

2014Ro14: ⁶⁷Se isotope produced in the fragmentation of 70 MeV/nucleon ⁷⁸Kr beam with Ni target. Fragments selected with the LISE3 separator at GANIL and identified by time-of-flight and energy loss. Measured half-life of ⁶⁷Se ground-state decay by (fragment) β , (fragment) γ correlations using set of four Si detectors (an energy loss ΔE detector, and DSSD and Si(Li)) for particles surrounded by four HPGe Clover detectors, three EXOGAM and one mini-clover Ge detector for γ rays. Mass measurement: 2011Tu02.

2012Bi10, 2011Ka07, 2010Ka32: authors analyzed origins of observed asymmetry of B(E1) strengths, and high-spin states for ⁶⁷Se and ⁶⁷As mirror nuclei.

Theoretical calculations dealing with structure and half-lives and decay modes in radioactivity: NSR database has 13 references, listed here in document records.

⁶⁷Se Levels

No evidence was found by 2009Or02 for a long-lived isomer in ⁶⁷Se.

Cross Reference (XREF) Flags

A 40 Ca(32 S, α n γ)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments
0.0	(5/2 ⁻)	133 ms 4	A	$%ε+%β^+=100; %εp=0.5 I (1995B123)$ T _z =-1/2. Production σ=0.11 μb 5 in ⁹ Be(⁷⁸ Kr,X),E=140 MeV/nucleon (2005St29),
				compared with theoretical cross sections.
				J^{n} : analogy to mirror g.s. state of O^{n} As with $J^{n} = (5/2^{-})$.
				$T_{1/2}$: weighted average of 133 ms 4 (2014Ro14, fragment- β , and fragment- γ correlations); and 136 ms <i>12</i> (2002Lo13,2002B117; previous $T_{1/2}$ =60 ms
				+17-11 in 1995Bl23); and 107 ms 35 (1994Ba50).
26.0 17	$(3/2^{-})$		Α	
647.0 9	$(7/2^{-})$		Α	
1061.0 13	$(7/2^{-})$		Α	
1364.0 [#] 9	(9/2+)	1.04 ns 42	A	T _{1/2} : measured mean lifetime τ =1.5 ns 6 (2009Or02, time spectra gated above and below the 9/2 ⁺ state).
2224.0 [@] 13	$(11/2^+)$		Α	
2279.0 [#] 13	$(13/2^+)$		Α	
3062.0 [@] 17	$(15/2^+)$		Α	
3505.0 [#] 17	$(17/2^+)$		A	

Adopted Levels, Gammas (continued)

⁶⁷Se Levels (continued)

E(level) [†]	J ^{π‡}	XREF	
3776.0 [@] 20	$(17/2^+)$	A	
4416.0 [@] 19	$(19/2^+)$	Α	
4794.0 [#] 19	$(21/2^+)$	Α	
5561.0 [#] 21	$(25/2^+)$	Α	

[†] From least-squares fit to Eγ data, assuming uncertainty of 1 keV for each γ ray.
[‡] As given by 2009Or02 and 2009WiZX, based on analogous states in mirror nucleus ⁶⁷As.
[#] Seq.(A): γ cascade based on 9/2⁺.
[@] Seq.(B): γ cascade based on 11/2⁽⁺⁾. This sequence is from level-scheme Fig. 1 in 2009WiZX, only the (19/2⁺) member of this sequence is given in 2009Or02.

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}^{\dagger}	\mathbf{E}_{f} .	\int_{f}^{π} Mu	ult.	δ	Comments
647.0	$(7/2^{-})$	647		0.0 (5/	2-)			
1061.0	$(7/2^{-})$	1035		26.0 (3/	2-)			
	., ,	1061		0.0 (5/	2-)			Weaker γ than the 1035 γ , according to Fig. 1 in 2009WiZX.
1364.0	$(9/2^+)$	303	12 7	1061.0 (7/	2 ⁻) [E1]			If E1, B(E1)(W.u.) $<4.3\times10^{-6}$.
	., ,				, L I			If M2, B(M2)(W.u.)<216, suggesting that transition should be dominantly E1, as RUL(M2)=1.
		717	100 21	647.0 (7/	2 ⁻) (E1+	⊦M2)	< 0.40	B(E1)(W.u.)= $1.6 \times 10^{-7} + 34 - 11$; B(M2)(W.u.)= $5.9 + 35 - 29$
								$\delta(M2/E1) = +0.47 < \delta < +3.49$ in 2009Or02.
								ADO=1.7 6.
								B(M2)(W.u.) is greater than $RUL(M2)=1$,
						_		suggesting that δ (M2/E1) should be <0.40.
		1364	18 10	0.0 (5/	2 ⁻) [M2]]		B(M2)(W.u.)=0.053 + 49 - 26
2224.0	$(11/2^+)$	860		1364.0 (9/	2+)			
2279.0	$(13/2^+)$	915		1364.0 (9/	2+)			
3062.0	$(15/2^+)$	838		2224.0 (11	$/2^{+})$			
3505.0	$(17/2^+)$	1226		2279.0 (13	$/2^{+})$			
3776.0	$(17/2^+)$	714		3062.0 (15	(2^{+})			
4416.0	$(19/2^+)$	640		3776.0 (17	$(/2^+)$			
		911		3505.0 (17	(2^{+})			
4794.0	$(21/2^+)$	378		4416.0 (19	(2^{+})			
	/	1289		3505.0 (17	(2^{+})			
5561.0	$(25/2^+)$	767		4794.0 (21	(2^{+})			

[†] From ⁴⁰Ca(³²S,αnγ) (2009Or02,2009WiZX).

$\gamma(^{67}Se)$

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

⁶⁷₃₄Se₃₃

3

Adopted Levels, Gammas

