Adopted Levels

History				
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Balraj Singh	ENSDF	18-March-2022	

 $S(n)=15320 CA; S(p)=-730 SY; Q(\alpha)=-1130 SY 2021Wa16,2019Mo01$

Estimated uncertainties (2021Wa16): 580 for S(p), 660 for Q(α) (2021Wa16).

S(p) and Q(α) from 2021Wa16. S(n) from 2019Mo01 (theory).

Q(\varepsilon)=16980 520, Q(\varepsilon p)=18820 470, S(2p)=-2890 300 (syst, 2021Wa16). S(2n)=34350 (theory, 2019Mo01).

2016Go26, 2016BI05: ⁶⁷Kr produced and identified at RIBF-RIKEN facility in ⁹Be(⁷⁸Kr,X) reaction at E=345 MeV/nucleon with beam intensity of up to 250 pnA. Identification of ⁶⁷Kr was made by determining atomic Z and mass-to-charge ratio A/Q, where Q=charge state of the ions. The selectivity of ions was based on magnetic rigidity, time-of-flight and energy loss using BigRIPS separator and Zero degree spectrometer ZDS. The separated nuclei were implanted in a wide range silicon-strip stopper array for ion and β particle detection WAS3ABi, consisting of three highly-segmented 1 mm thick double-sided silicon detectors, a stack of ten segmented 1 mm thick single-sided silicon strip detectors. The γ rays were detected by EURICA array of 84 HPGe detectors surrounding the WAS3ABi system. A total of 348 nuclei of ⁶⁷Kr were identified at the BigRIPS spectrometer, 82 at the Zero-Degree Spectrometer (ZDS), and finally 36 implanted at the WAS3ABi detection system.

2020Gi02, 2017GoZT (also 2019Go34): further analysis of experiments at RIBF-RIKEN reported in 2016Go26.

Theoretical calculations for 2p decay of ⁶⁷Kr, and other structure features: NSR database has 22 references, listed here in document records.

Additional information 1.

⁶⁷Kr Levels

E(level)	T _{1/2}	Comments	
0	7.4 ms 30	s 30 $\sqrt[]{\varepsilon} + \frac{63}{2} \frac{14}{2}$; $\frac{63}{2} \frac{14}{2}$; $\frac{63}{2}$; $\frac{14}{2}$; $\frac{63}{2}$; $\frac{14}{2}$; $\frac{14}$	
		A total of 82 events were assigned in 2016Go26 to ⁶⁷ Kr.	
		Production σ =3.0 fb 8 (2016B105) in ⁹ Be(⁷⁸ Kr,X), E=345 MeV/nucleon.	
		Proton peak observed at 1690 keV 17 (2016Go26,2020Gi02).	
		E(level): It is assumed that the observed events correspond to the ground-state.	
		J^{π} : 5/2 ⁻ proposed from theory in 2019Mo01; and 3/2 ⁻ from systematics in 2021Ko07.	
		$T_{1/2}$: measured by 2016Go26 (same $T_{1/2}$ given in 2020Gi02 and 2017GoZT thesis) from correlated decay curve for ⁶⁷ Kr implants and subsequent decays.	
		Several theoretical calculations as cited in Fig. 1 of 2016Go26 predict negative S(2p) value for ⁶⁷ Kr, making this nucleus a possible 2p-emitter.	