Adopted Levels, Gammas

		History Author								
Type				Author						
	Full Eva	luation Huo	Junde, Hu	ang Xiaolong, J. K. Tuli	NDS 106,159 (2005)	1-Apr-2005				
$Q(\beta^{-}) = -6071\ 5;\ S(n) = 9122\ 6;\ S(p) = 6223\ 6;\ Q(\alpha) = -2870\ 5\ 2012Wa38$ Note: Current evaluation has used the following Q record $-6.01E3\ 109105\ 316222\ 6-2870\ 5\ 2003Au03.$										
				⁶⁷ Ge Levels	5					
				Cross Reference (XR	EF) Flags					
				A 67 As ε decay B 57 Fe(12 C,2n γ) C 64 Zn(α ,n γ), 63 C D 70 Ge(3 He, 6 He)	'u(⁶ Li,2nγ)					
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF		Comments					
0	1/2-	18.9 min 3	ABCD	$\% \varepsilon + \% \beta^+ = 100$						
				J=1/2 from $\gamma(\theta)$ and $\gamma\gamma(\theta)$ T _{1/2} : weighted average of	9) in 64 Zn(α ,n γ), π =- from from 18.7 min 5 (1959Ri35)	bm log ft =5.61 4 to $1/2^{-}$. and 19.0 min 3 (1969Ba07).				
18.20 5	5/2-	13.7 [‡] μs 9	ABC	J=5/2 from $\gamma(\theta)$ and $\gamma\gamma(\theta)$	9) in ⁶⁴ Zn(α ,n γ); π =- from the formula of	$E2$ to $1/2^-$.				
122.58 14	$3/2^{(-)}$		A CD	J=3/2 from $\gamma(\theta)$ and $\gamma\gamma(\theta)$	9) in ${}^{04}Zn(\alpha,n\gamma); \pi=-$ from	om shell model				
243.61 16	$3/2^{(-)}$		A C	J=3/2 from $\gamma(\theta)$ and $\gamma\gamma(\theta)$ (5/2 ⁻).	9) in ⁶⁴ Zn(α ,n γ); π =(-) f	from log ft =5.64 7 from				
711.55 24	5/2 ⁽⁻⁾		A Cd	J=5/2 from $\gamma(\theta)$ and $\gamma\gamma(\theta)$ systematics.	θ) in ⁶⁴ Zn(α,nγ); $π$ =- from the formula for $β$ in ⁶⁴ Zn(α,nγ); $π$ =- from the formula for $β$ is the formula for $β$ in the formula for $β$ is the formula for $β$ in the formula for $β$ is the formula for $β$ in the formula for $β$ is the formula for $β$ in the formula for $β$ is the formula for $β$ in the formula for $β$ is the formula for $β$ in the formula for $β$ is the formula for $β$ in the formula for $β$ is the formula for $β$ in the formula for $β$ is the formula for $β$ in the formula for $β$ is the formula for $β$ in the formula for $β$ is the formula for $β$ in the formula for $β$ in the formula for $β$ is the formula for $β$ in the formula for $β$ is the formula for $β$ in the formula for $β$ is the formula for $β$ in the formula for $β$ is the formula for $β$ in the formula for $β$ is the formula for $β$ in the formula for $β$ is the formula for $β$ in the formula for $β$ is the formula for $β$ in the formula for $β$ is the formula for $β$ in the formula for $β$ in the formula for $β$ in the formula for $β$ is the formula for $β$ in the formula formula for $β$ in the formula formula form $β$ in the formula formula in the formula f	om shell model				
714.70 <i>25</i> 751.70 <i>6</i>	9/2+	146 ns <i>4</i>	Cd BC	μ =-0.849 <i>18</i> (1989Ra17); g=-0.1887 <i>26</i> (1991Le34) μ : From ⁶⁴ Zn(α ,n γ). J=9/2 from $\gamma(\theta)$ and polarization studies in ⁵⁷ Fe(¹² C,2n γ); π =+ from M2 to $5/2^{-}$. T _{1/2} : from 2000Ch07. Others: 110.9 ns <i>14</i> (1979Al04), 70 ns 7 (1973BeVT),						
808.13 18			A C	102 113 10 (19701/01/01/01/01/01/01/01/01/01/01/01/01/0						
929.4 3	<i>≂</i> (−)		CD		on • 64 न ()					
1019.90 20	5/2(AC	$J=5/2$ from $\gamma(\theta)$ and $\gamma\gamma(\theta)$ systematics.	9) in $\sqrt[6+]{Zn}(\alpha,n\gamma); \pi=-$ from	om shell model				
1150.0 3			c							
1159.0 4			С							
1256.7 3										
1293.9 4			A CD							
1431.8 10			С							
1641.89 <i>14</i>	11/2+#		В							
1652.8 4 1698.4 4			A C A C							
1747.29 7	13/2 ^{+#}		В							
1900.8 4			AC							
2096.8 8 2156 4 8			A C C							
2218.2 10			ΑČ							
2251.3 8			A C							
2421.12 15	$(13/2^+)^{\#}$		В							

Adopted Levels, Gammas (continued)

⁶⁷Ge Levels (continued)

E(level) [†]	XREF	E(level) [†]	J^{π}	XREF	E(level) [†]	J^{π}	XREF
2524.4 8	AC	3074.12 10	(17/2 ⁺) [#]	В	4733.05 12	(21/2 ⁻) [#]	В
2597.2 8	С	3603.96 10	$(15/2^{-})^{\#}$	В	4847.98 11	$(23/2^{-})^{\#}$	В
2690 30	D	4313.60 11	(19/2 ⁻) [#]	В			

[†] From a least-squares fit to the E γ data. [‡] From pulsed beam measurements in ⁶⁴Zn(α ,n γ), ⁶³Cu(⁶Li,2n γ). [#] From $\gamma(\theta)$, polarization and excitation function data in ⁵⁷Fe(¹²C,2n γ).

Adopted Levels, Gammas (continued)									
	$\gamma(^{67}\text{Ge})$								
Mult.	δ	α [@]	Commen						

E _i (level)	\mathbf{J}_{i}^{π}	Eγ	I_{γ}	E_f	$J^{\pi}_{\ c}$	Mult.	δ	α [@]	Comments
18 20	$\frac{1}{5/2^{-}}$	18 20 5	100 18		$\frac{1}{1/2^{-}}$	F2		364	$B(F2)(W_{H}) = 3.5.3$
10.20	5/2	10.20 5	100 10	0	1/2	E2		504	Mult: from $\alpha(K)$ exp in ⁶⁴ Zn(α ny), ⁶³ Cu(⁶ Li, 2ny),
122.58	$3/2^{(-)}$	104.4.3	23.8.5	18.20	$5/2^{-}$	(M1+E2) [‡]	>4	0.614	δ : from 1981MuZZ
122100	0/2	122.7.3	100.0.5	0	$1/2^{-}$	$(M1(+E2))^{\ddagger}$	0.85.85	0 17 13	δ : from 1981MuZZ
243 61	3/2(-)	120.8.3	100.0 25	122 58	$3/2^{(-)}$	$(M1+F2)^{\ddagger}$	>5	0.361	δ: from 1981MuZZ
245.01	5/2	225.4 3	14.9 18	18.20	$5/2^{-}$	(1411+122)	25	0.501	
		243.6 <i>3</i>	81 <i>3</i>	0	$1/2^{-}$	‡			δ : +0.04 16 or -1.7 +6-10 for (M1+E2).
711.55	$5/2^{(-)}$	589.0 <i>3</i>	42	122.58	$3/2^{(-)}$	(M1+E2) [‡]	-1.1 [#] +6-23		
		693.1 5	100	18.20	5/2-				
714.70		471.2 3		243.61	$3/2^{(-)}$				
751 70	0/2+	592.0 3	100	122.58	$3/2^{(-)}$	142			
/51./0	9/21	/33.50 3	100	18.20	5/2	M2			$B(M2)(W.u.)=0.0798 \ 10$
808 13		685 5 3	61.0	122 58	3/2(-)				Mult.: M2 from $\alpha(\mathbf{K}) \exp (i \mathbf{I} + \Sigma i)(\alpha, i \gamma)$.
606.15		789 9 3	24 7	122.30	5/2				
		808.1 3	100 11	0	$1/2^{-}$				
929.4		217.9 3		711.55	$5/2^{(-)}$				
		807.0 10		122.58	$3/2^{(-)}$				
		911.0 5		18.20	5/2-				
1019.90	$5/2^{(-)}$	776.2 2	32	243.61	$3/2^{(-)}$				
		897.45 21	100	122.58	$3/2^{(-)}$	(M1+E2) [‡]	$-1.0^{\#} + 8 - 24$		
1150.0		437.8 7		711.55	$5/2^{(-)}$				
		1131.9 <i>3</i>		18.20	5/2-				
1159.0		1036.4 3	100	122.58	$3/2^{(-)}$				
1256.7		327.5 7		929.4	1/2-				
1273.8		1230.7 3		0 808 13	1/2				
1275.8		405.07	45	122.58	3/2(-)				
		1274.3 10	100	0	$1/2^{-}$				
1293.9		1049.6 10	19	243.61	$3/2^{(-)}$				
		1171.3 5	100	122.58	$3/2^{(-)}$				
		1294.0 5	93	0	$1/2^{-}$				
1431.8		1309.2 10	100	122.58	$3/2^{(-)}$				
1641.89	$11/2^+$	890.18 <i>12</i>	100	751.70	9/2+	M1+E2 [†]	+0.50 [†] 8		
1652.8		633.0 <i>3</i>	100	1019.90	$5/2^{(-)}$				
1698.4		1576.4 7		122.58	$3/2^{(-)}$				
		1698.0 5		0	$1/2^{-}$				
1747.29	$13/2^+$	995.58 <i>3</i>	100	751.70	9/2+	E2 [†]			

ω

From ENSDF

 $^{67}_{32}\text{Ge}_{35}$ -3

$\gamma(^{67}\text{Ge})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	E_f	${ m J}_f^\pi$	Mult.	δ
1900.8		248.0 3	100	1652.8			
		1657.0 5	25	243.61	$3/2^{(-)}$		
2096.8		1385.2 10	100	711.55	$5/2^{(-)}$		
2156.4		1912.8 <i>10</i>		243.61	$3/2^{(-)}$		
		2156.4 10		0	$1/2^{-}$		
2218.2		2218.2 10	100	0	$1/2^{-}$		
2251.3		1443.4 <i>10</i>		808.13			
		2128.4 10		122.58	$3/2^{(-)}$		
2421.12	$(13/2^+)$	779.23 5	100	1641.89	$11/2^{+}$	(M1+E2) [†]	$+0.5^{\dagger}$ 1
2524.4		1230.7 10		1293.9			
		2280.6 10		243.61	$3/2^{(-)}$		
2597.2		500.3 <i>3</i>		2096.8			
		2474.6 10		122.58	$3/2^{(-)}$		
3074.12	$(17/2^+)$	1326.84 9	100	1747.29	$13/2^{+}$	(E2) [†]	
3603.96	$(15/2^{-})$	1856.62 9	100	1747.29	$13/2^{+}$	(E1) [†]	
4313.60	$(19/2^{-})$	709.63 6	77 4	3603.96	$(15/2^{-})$	(E2) [†]	
		1239.50 9	100 11	3074.12	$(17/2^+)$	(E1(+M2)) [†]	$+0.01^{\dagger}$ 4
4733.05	$(21/2^{-})$	419.45 4	100	4313.60	$(19/2^{-})$	(M1(+E2)) [†]	$+0.02^{\dagger}$ 3
4847.98	$(23/2^{-})$	534.38 <i>3</i>	100	4313.60	$(19/2^{-})$	(E2) [†]	

4

[†] From $\gamma(\theta)$ and polarization in ⁵⁷Fe(¹²C,2n γ). [‡] From $\gamma(\theta)$ and directional correlations with an oriented source in ⁶⁴Zn(α ,n γ) and ΔJ^{π} . [#] From $\gamma(\theta)$ and directional correlations with an oriented source in ⁶⁴Zn(α ,n γ). [@] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

Adopted Levels, Gammas

Level Scheme (continued)

Intensities: Relative photon branching from each level

