	History			
Туре	Author	Citation	Literature Cutoff Date	
Full Evaluation	Huo Junde, Huang Xiaolong, J. K. Tuli	NDS 106, 159 (2005)	1-Apr-2005	

Parent: ⁶⁷Ge: E=0; $J^{\pi}=1/2^-$; $T_{1/2}=18.9 \text{ min } 3$; $Q(\varepsilon)=4222 \ 5$; $\mathscr{H}\varepsilon+\mathscr{H}\beta^+$ decay=100.0 1969Zo05: E γ , I γ , $\gamma\gamma$ coincidences.

19092005. Ey, Iy, $\gamma\gamma$ conicit

1969Vr01: Εγ, Ιγ.

1969Ba07: E γ , I γ , $\gamma\gamma$ coincidences, T_{1/2}, ce spectrum, β^+ spectra and Fermi-Kurie analysis. Decay scheme is based on 1969Zo05. See 1959Ri35, 1964Va23, and 1969Ba07 for β^+ measurements.

Ua Le	vers
Ou LU	V UIL

E(level) [†]	J ^π ‡	T _{1/2}	E(level) [†]	$J^{\pi \ddagger}$	E(level) [†]	Jπ‡
0	3/2-	3.261 d <i>1</i>	1555.9? 11	5/2-	3162.0 8	
167.01 5	$1/2^{-}$		1639.92 17	3/2-	3225.1 <i>3</i>	3/2-
359.39 16	$5/2^{-}$		1809.84 18	3/2-	3401.6 5	$(1/2^{-}, 3/2^{-})$
828.33 15	$3/2^{-}$		1976.1 5		3632.2 15	
911.23 <i>18</i>	$5/2^{-}$		2526.7 5	$(1/2^{-}, 3/2^{-})$	3655.4 7	$(1/2^{-}, 3/2^{-})$
1081.64 18	$1/2^{-}$		2619.6 5		3728.0 9	$(1/2^{-}, 3/2^{-})$
1203? <i>1</i>	$7/2^{-}$		2730.7 4	$(1/2^-, 3/2^-)$		

[†] From a least-squares fit to the $E\gamma$ data.

[‡] From Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$I\beta^+$ ^{†‡}	$I\varepsilon^{\dagger\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
(494 5)	3728.0		0.030 4	5.60 6	0.030 4	εK=0.8806; εL=0.1010; εM+=0.01839
(567 5)	3655.4		0.040 6	5.60 7	0.040 6	εK=0.8811; εL=0.1006; εM+=0.01831
(590 5)	3632.2		0.014 3	6.09 10	0.014 3	ε K=0.8813; ε L=0.1005; ε M+=0.01828
(820 5)	3401.6		0.186 18	5.26 5	0.186 18	εK=0.8822; εL=0.09968; εM+=0.01812
(997 5)	3225.1		0.45 4	5.04 4	0.45 4	εK=0.8826; εL=0.09933; εM+=0.01805
(1060 5)	3162.0		0.134 12	5.62 4	0.134 12	εK=0.8827; εL=0.09924; εM+=0.01803
(1491 5)	2730.7	0.0242 25	0.30 3	5.58 5	0.32 3	av E β =202.9 22; ε K=0.8165 25; ε L=0.0913 3; ε M+=0.01658 5
(1602 5)	2619.6	0.0183 20	0.105 11	6.09 5	0.123 13	av Eβ=249.9 22; εK=0.752 4; εL=0.0840 4; εM+=0.01525 7
(1695 5)	2526.7	0.047 6	0.159 17	5.96 5	0.206 22	av E β =289.5 22; ε K=0.683 4; ε L=0.0762 5; ε M+=0.01384 9
(2246 5)	1976.1	0.086 11	0.040 5	6.81 6	0.126 16	av $E\beta$ =530.5 23; ε K=0.280 3; ε L=0.0311 3; ε M+=0.00565 6
(2412 5)	1809.84	4.1 3	1.27 10	5.36 4	5.4 4	av $E\beta$ =605.0 23; ε K=0.2080 19; ε L=0.02316 21; ε M+=0.00420 4
(2582 5)	1639.92	7.5 5	1.60 9	5.32 3	9.1 5	av $E\beta$ =681.8 23; ϵ K=0.1556 13; ϵ L=0.01732 15; ϵ M+=0.00314 3
(2666 5)	1555.9?	0.024 4	0.0043 7	7.92 7	0.028 4	av $E\beta$ =720.0 24; ε K=0.1356 12; ε L=0.01509 13; ε M+=0.002738 23
(3019 5)	1203?	0.012 3	0.0012 3	8.60 10	0.013 3	av E_{θ}^{2} =882.0 24; ε K=0.0797 6; ε L=0.00886 7; ε M+=0.001607 12
(3140 5)	1081.64	3.5 4	0.29 3	6.24 5	3.8 4	av $E\beta$ =938.2 24; ε K=0.0675 5; ε L=0.00750 5; ε M+=0.001361 10
(3394 5)	828.33	1.0 3	0.061 17	6.98 12	1.1 3	av Eβ=1056.2 24; εK=0.0489 3; εL=0.00543 4; εM+=0.000985 6
(4055 5)	167.01	74 5	2.05 14	5.61 4	76 5	av Eβ=1367.9 24; εK=0.02390 12; εL=0.002653 13

Continued on next page (footnotes at end of table)

 67 Ge ε decay 1969Zo05,1969Vr01,1969Ba07 (continued)

 ε, β^+ radiations (continued)

[†] From I(γ +ce) imbalance at each level. [‡] Absolute intensity per 100 decays.

 $\gamma(^{67}\text{Ga})$

I γ normalization: From measured absolute intensity of the 1473 γ (1969Zo05), the uncertainty in I γ normalization is estimated by the evaluator from the uncertainties in the intensities of the 167 γ and the 511 γ added in quadrature.

E_{γ}^{\dagger}	I_{γ} ^{‡@}	E _i (level)	J_i^π	E_f	\mathbf{J}_{f}^{π}	Mult. [#]	$\delta^{\#}$	α &	Comments
167.01 5	1720 60	167.01	$1/2^{-}$	0	$3/2^{-}$	[M1]		0.01823	
253.3 4	6.6 6	1081.64	$1/2^{-}$	828.33	$3/2^{-}$				
359.5 2	30 <i>3</i>	359.39	5/2-	0	$3/2^{-}$	M1+E2	-0.08 1		
468.6 10	2.6 3	828.33	3/2-	359.39	$5/2^{-}$				
551.2 8	1.7 2	911.23	5/2-	359.39	$5/2^{-}$	(M1(+E2))	+0.3 + 10 - 5		
557.4 8	1.2 <i>I</i>	1639.92	3/2-	1081.64	$1/2^{-}$				
661.1 <i>3</i>	6.2 6	828.33	$3/2^{-}$	167.01	$1/2^{-}$	M1+E2	-0.36 9		
728.2 5	92	1809.84	3/2-	1081.64	$1/2^{-}$				
728.7 4	48 5	1639.92	3/2-	911.23	$5/2^{-}$				
744.2 4	1.4 2	911.23	5/2-	167.01	$1/2^{-}$	E2(+M3)	-0.03 7		
811.8 <i>3</i>	16.0 <i>16</i>	1639.92	3/2-	828.33	$3/2^{-}$				$\delta: \leq -0.3 \geq -1.7$ for M1+E2.
828.3 <i>3</i>	61 5	828.33	3/2-	0	$3/2^{-}$	M1+E2	-0.14 4		
898.5 <i>3</i>	19.5 20	1809.84	3/2-	911.23	$5/2^{-}$	(M1(+E2))	≤+0.41		
911.2 <i>3</i>	63 6	911.23	5/2-	0	$3/2^{-}$	M1+E2	+0.32 2		
914.8 <i>3</i>	62 6	1081.64	$1/2^{-}$	167.01	$1/2^{-}$	(M1)			
981.3 <i>3</i>	23 2	1809.84	3/2-	828.33	$3/2^{-}$	(M1(+E2))	+0.8 + 27 - 8		
1081.3 <i>3</i>	21 2	1081.64	$1/2^{-}$	0	3/2-				
1196.5 10	0.58 7	1555.9?	5/2-	359.39	$5/2^{-}$	M1+E2	-0.65 3		
1203 <i>I</i>	0.26 5	1203?	7/2-	0	$3/2^{-}$	E2(+M3)	$-0.00\ 2$		
1280.6 <i>3</i>	7.7 8	1639.92	3/2-	359.39	$5/2^{-}$	(M1(+E2))	≤+0.5		
^x 1317.6 8	1.6 2								
1450.7 <i>3</i>	13.4 <i>13</i>	1809.84	3/2-	359.39	5/2-	(M1(+E2))	≤+0.22		
1472.8 <i>3</i>	100	1639.92	3/2-	167.01	$1/2^{-}$	M1+E2	-0.16 2		
1639.5 7	13 2	1639.92	3/2-	0	3/2-				
1643.0 5	18 2	1809.84	3/2-	167.01	$1/2^{-}$				
^x 1668.8 10	0.26 5								
1680.0 <i>10</i>	0.23 5	3655.4	$(1/2^{-}, 3/2^{-})$	1976.1					
1708.2 10	0.9 1	2619.6		911.23	$5/2^{-}$				
1790.8 8	1.3 2	2619.6		828.33	3/2-				
1809.4 6	27 3	1809.84	3/2-	0	3/2-	(M1(+E2))	-0.26 26		
1844.7 <i>10</i>	0.5 1	3655.4	$(1/2^-, 3/2^-)$	1809.84	3/2-				
1976.2 5	2.8 3	1976.1		0	3/2-				
2079.5 10	0.44 5	3162.0		1081.64	$1/2^{-}$				
2144 1	1.2 4	3225.1	3/2-	1081.64	$1/2^{-}$				
2395.9 6	1.4 2	3225.1	3/2-	828.33	3/2-				
2453.0 7	0.32 3	2619.6		167.01	$1/2^{-}$				
2526.6 5	4.2 4	2526.7	$(1/2^{-}, 3/2^{-})$	0	3/2-				
2563.6 5	4.6 5	2730.7	$(1/2^-, 3/2^-)$	167.01	$1/2^{-}$				

From ENSDF

$\gamma(^{67}\text{Ga})$ (continued)

E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger @}$	E_i (level)	\mathbf{J}_i^π	E_f	\mathbf{J}_f^{π}	E_{γ}^{\dagger}	$I_{\gamma}^{\ddagger @}$	E_i (level)	\mathbf{J}^{π}_{i}	E_f	\mathbf{J}_{f}^{π}
^x 2668.8 8	0.71 7					x3307.8 10	0.36 4				
2730.6 7	1.9 2	2730.7	$(1/2^{-}, 3/2^{-})$	0	$3/2^{-}$	x3361.9 10	0.41 4				
2865.6 10	2.1 2	3225.1	3/2-	359.39	$5/2^{-}$	3368.8 10	0.36 4	3728.0	$(1/2^{-}, 3/2^{-})$	359.39	$5/2^{-}$
3042.2 7	0.7 1	3401.6	$(1/2^{-}, 3/2^{-})$	359.39	5/2-	3401.5 5	3.1 3	3401.6	$(1/2^{-}, 3/2^{-})$	0	3/2-
3058.3 5	3.9 4	3225.1	3/2-	167.01	$1/2^{-}$	3465.7 20	0.17 3	3632.2		167.01	$1/2^{-}$
^x 3123.1 7	1.4 2					x3612.4 20	0.12 4				
^x 3144.2 10	0.27 3					3631.4 20	0.12 4	3632.2		0	$3/2^{-}$
3162.8 10	2.3 2	3162.0		0	$3/2^{-}$	3655.6 20	0.09 3	3655.4	$(1/2^{-}, 3/2^{-})$	0	$3/2^{-}$
3225.5 7	0.59 6	3225.1	3/2-	0	3/2-	3727.0 20	0.26 5	3728.0	$(1/2^-, 3/2^-)$	0	3/2-

[†] From 1969Zo05. [‡] Relative intensity from 1969Zo05.

[#] From Adopted Levels.

[@] For absolute intensity per 100 decays, multiply by 0.049 2.

& Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

 $x \gamma$ ray not placed in level scheme.

S

From ENSDF

 $^{67}_{31}$ Ga $_{36}$ -5

 $^{67}_{31}\text{Ga}_{36}$ -5