⁶⁷₃₁Ga₃₆-1

⁶⁴Zn(*α*,**p***γ*), ⁵³Cr(¹⁶O,**p**n*γ*) 1978Al32,1977Al35

	History		
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Huo Junde, Huang Xiaolong, J. K. Tuli	NDS 106, 159 (2005)	1-Apr-2005

1978Al32: $E(\alpha)=13-15$ MeV; $\gamma\gamma$ coincidences, $\gamma(\theta)$, linear polarization, $T_{1/2}$ by DSAM and delayed coincidences. $E(^{16}O)=35-51$ MeV; $E\gamma$, $I\gamma$, $\gamma\gamma$ coincidences, $T_{1/2}$ by RDM.

1977Al35: $E(\alpha)$ =7-16 MeV; $E\gamma$, $I\gamma$, $\gamma\gamma$ coincidences, $\gamma(\theta)$, linear polarization, $T_{1/2}$ by DSAM.

1974Ha09: $E(\alpha)=12.2$ MeV and 14.2 MeV for ${}^{64}Zn(\alpha,p\gamma)$ reaction and $E(\alpha)=24$ MeV and 31 MeV for ${}^{65}Cu(\alpha,2n\gamma)$ reaction; $E\gamma$, $I\gamma$, $\gamma\gamma$ and $p\gamma$ coincidences, $\gamma(\theta)$, γ yields, $p\gamma(\theta)$, linear polarization.

Data for all the levels below and above 2 MeV are taken from 1977Al35 and 1978Al32, respectively, unless noted otherwise.

⁶⁷Ga Levels

E(level) [†]	$J^{\pi \ddagger}$	$T_{1/2}^{\#}$	Comments
0	3/2-		
167	1/2-	42 ns 21	$T_{1/2}$: from delayed coincidence measurements (1978Al32).
359.2 <i>3</i>	5/2-	49 [@] ps 5	
827.8 6	3/2-	0.16 ps 7	J^{π} : $3/2^{-}$ from $\gamma(\theta)$ and polarization (1977Al35).
911.2 7	5/2-	>0.14 ps	J^{π} : 5/2 ⁻ from $\gamma(\theta)$ and polarization (1977Al35).
1081.5 6	$1/2^{-}$	0.28 ps 12	J=1/2 from isotropic $\gamma(\theta)$ of 253 γ and 1082 γ (1977A135).
1201.7 9	7/2-	1.5 [@] ps 10	
1412.5 9	7/2-	0.61 ps 24	J=7/2 from $\gamma(\theta)$ and yield functions (1974Ha09).
1519.1 9	9/2-	1.9 [@] ps 8	J^{π} : 9/2 ⁻ from $\gamma(\theta)$ yield function and polarization (1974Ha09).
1554.4 12	$5/2^{-}$	0.17 ps 5	J^{π} : $3/2^+$, $5/2^-$ from $\gamma(\theta)$ and polarization (1977A135).
1639.6 <i>13</i>	3/2-	0.14 ps 4	J=3/2 from $\gamma(\theta)$ and polarization data of 1472 γ (1977Al35).
1809.7 <i>13</i>	3/2-	0.23 ps 10	J=5/2 from yield function of 981γ (1974Ha09).
1976.6 <i>16</i>		>0.09 ps	
1977.6 9	5/2,7/2	>0.62 ps	J=7/2 from $\gamma(\theta)$ and polarization data of 1150 γ (1977Al35).
2073.5 7	9/2+	<6.9 [@] ps	$T_{1/2}$: >1.04 ps from DSAM.
			J^{π} : 9/2 ⁺ from $\gamma(\theta)$ and polarization (1978A132).
2123.3 11	5/2-	>0.31 ps	
2172.1 13	$(3/2)^{-}$		
2190.3 12	9/2-	0.68 ps 21	J^{π} : 9/2 ⁻ from $\gamma(\theta)$ and polarization (1978Al32).
2262.7 19			
2263.8 9	9/2-	0.68 ps 22	J=9/2 from $\gamma(\theta)$ of 1062 γ and 1353 γ (1978A132).
2373.6 12	$3/2^+, 7/2^+$	>0.69 ps	J^{π} : 3/2 ⁺ , 5/2 ⁻ , 7/2 ⁺ from $\gamma(\theta)$ and polarization (1977Al35).
2456.7 10	$11/2^{-}$	>1.04 ps	J^{π} : 7/2 ⁺ , 11/2 ⁻ from $\gamma(\theta)$ and polarization (1977Al35).
2597 1		1.0.4	
2651.6 10	7/2	>1.04 ps	J^{*} : $7/2$ from $\gamma(\theta)$ and polarization of 1132γ (19/8A132).
2/9/.3 10	(5/2, 9/2)	0.38 ps 14	J^{π} : (5/2, 9/2) from $\gamma(\theta)$ and linear polarization of 1596 γ (19/8A132).
2862.4 0	11/2	0.87 ps 28	J ^{**} : 11/2 from $\gamma(\theta)$ and linear polarization of /89 γ and 1343 γ (19/8A132). This
			experiment could not completely resolve 15457 from 15557; which may explain T_{π} 11/2 r_{π}
			$J^{n}=11/2$ obtained. $J^{n}=11+/2$ from "Fe("-C,pn γ).
3031.7 10	$13/2^{+}$	4.5 ^{^w ps 4}	J^{π} : 13/2 ⁺ from $\gamma(\theta)$ and polarization of 958 γ (1978Al32).
3160			
3190.8 11	$11/2^+$	>1.04 ps	J=11/2 from $\gamma(\theta)$ and polarization data for 1117 γ (1978A132).
3524.9 8	9/2', 13/2'	>1.04 ps	$J^{\prime\prime}$: 9/2 ⁺ , 13/2 ⁺ from $\gamma(\theta)$ and polarization of 494 γ (19/8AI32).
3577.9 11	$15/2^{+}$	0.16^{6} ns 4	J=11/2, 15/2 from $\gamma(\theta)$ and polarization of 546 γ (1978Al32).
3628.5 12	$13/2^+, 17/2^+$	>0.48 ps	J^{n} : $13/2^{+}, 17/2^{+}$ from $\gamma(\theta)$ and polarization of 596 γ (1978Al32).
3855.7 11	$17/2^{+}$	11 [@] ps 2	
4199.1 <i>11</i>	$(17/2^+)$	<0.69 [@] ps	
4221.1 11	/	1	
4290.1 12	$19/2^{+}$	12.5 [@] ns 19	
/0.1 12		P5 17	

Continued on next page (footnotes at end of table)

⁶⁴Zn(α ,p γ), ⁵³Cr(¹⁶O,pn γ) 1978Al32,1977Al35 (continued)

⁶⁷Ga Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$
4744.8 12	
5224.1 14	$(23/2^+)$

[†] From 1977Al35 or 1978Al32.
[‡] From Adopted Levels; supporting arguments from this reaction are indicated.
[#] From DSAM by 1977Al35 or 1978Al32, unless indicated otherwise.
[@] From recoil distance measurements by 1978Al32.

I				64 Zn(α ,	$p\gamma$), ⁵³ Cr(¹⁶ O,	pnγ) 1978A	132,1977AI	35 (continued)
						$\gamma(^{67}\text{Ga})$		
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	α^{a}	Comments
167	$1/2^{-}$	167		0 3/2-	[M1]		0.01823	
359.2	5/2-	359.2 <i>3</i>	100	0 3/2-	M1+E2	-0.08 1		
827.8	$3/2^{-}$	469	<2	359.2 5/2-				
		661.1 5	9.8 12	167 1/2-	M1+E2	-0.36 9		
011.0	5 10-	827.9 7	90.2 12	0 3/2-	M1+E2	-0.14 4		
911.2	5/2	553.3 9	1.7.5	359.2 5/2	E2(+M2)	0.02.7		
		/45.2 0	2.2.0	10/ 1/2 0 $2/2^{-1}$	$E_2(+M_3)$ M1+E2	-0.03 /		
1081.5	$1/2^{-}$	253 1 2	90.1 <i>10</i> 8 1 <i>10</i>	$827 \times 3/2^{-}$	WIT+E2	+0.32 2		
1001.5	1/2	915.4.7	68.0.28	$167 1/2^{-1}$	(M1)			
		1081.8 9	23.9 22	$0 \frac{3}{2^{-}}$	(111)			Mult.: M1+E2 (1977AI35).
1201.7	$7/2^{-}$	842 3 7	23 5 23	359 2 5/2-	$M1+E2^{@}$	$-2.3^{@}$ 1		
1201.7	,,_	1201 9 10	76 5 23	$0 3/2^{-}$	$F_{2}(+M_{3})^{@}$	$-0.00^{@}2$		
1412.5	$7/2^{-}$	502.2.4	10.5.25	$911.2 5/2^{-1}$	$M_{1+E_{2}}$	-0.11 l		
1112.5	172	1053.3 8	34.7 21	359.2 5/2-	M1+E2	-2.0 1		
		1411.7 11	54.8 23	0 3/2-	E2(+M3)	-0.00 1		
1519.1	9/2-	1159.9 9	100	359.2 5/2-	E2(+M3)	$-0.00 \ 4$		Mult.: E2(+M3) from $\gamma(\theta)$ and polarization data (1974Ha09).
								δ : -0.00 2 (1974Ha09).
1554.4	5/2-	1195.3 10	57.1 29	359.2 5/2-	M1+E2	-0.65 3		
1620.6	2/2-	1554.2 13	42.9 29	$0 \frac{3}{2}$	MI+E2	+0.42 4		
1059.0	5/2	339 720	0.5 2 26 2 28	1081.3 1/2 $911.2 5/2^{-1}$				
		812	10 2 11	827.8 3/2				
		1280	4.4.5	$359.2 5/2^{-1}$				
		1472.2 12	52.4 29	167 1/2-	M1+E2	-0.16 2		
		1640	6.3 11	$0 3/2^{-}$				
1809.7	3/2-	729	8.5 19	1081.5 1/2-				
		898	18.4 18	911.2 5/2-				
		981	21.4 15	827.8 3/2-				
		1451.9 12	11.5 11	359.2 5/2 167 1/2-				
		1042	14.9 19	$107 1/2 0 3/2^{-1}$				
1976 6		1976 6 16	100	$0 \frac{3}{2}$				
1977.6	5/2.7/2	776.1	100	$1201.7 7/2^{-1}$				
		1149.6 9		827.8 3/2-				
2073.5	$9/2^{+}$	554.7 4	40.2 15	1519.1 9/2-	$E1(+M2)^{\#}$	$-0.00^{\#} 2$		
	- 1	871 5 7	59.8.15	1201 7 7/2-	$E1(+M2)^{\#}$	$-0.00^{\#}$ 2		
2123.3	$5/2^{-}$	1295.5 11	100	827.8 3/2-	(M1+E2)	≥+0.2		
2172.1	$(3/2)^{-}$	1343.7 11		827.8 3/2-	/			
		2172.8 15		0 3/2-				
2190.3	9/2-	776.0 <mark>&</mark> 10		1412.5 7/2-				
				•				

 $^{67}_{31}{
m Ga}_{36}$ -3

L

					γ ⁶⁷	Ga) (continue	<u>(b)</u>
E _i (level)	\mathbf{J}_i^{π}	Eγ	I_{γ}^{\dagger}	$E_f J_f^{\pi}$	Mult. [‡]	δ^{\ddagger}	Comments
2190.3	9/2-	988 <mark>&</mark> 2		1201.7 7/2-			
	- /	1279.1 10		911.2 5/2-	E2(+M3) [#]	$-0.02^{\#} 2$	
2262.7		2262.7 19	100	0 3/2-			
2263.8	9/2-	1061.6 9	49.6 16	1201.7 7/2-	M1+E2 [#]	$-2.4^{\#} 2$	
	,	1353.1 11	50.4 16	911.2 5/2-			
2373.6	$3/2^+, 7/2^+$	1462.4 12	100	911.2 5/2-			
2456.7	$11/2^{-}$	1255 <i>I</i>	100	1201.7 7/2-			
2597		1184 <i>1</i>	100	1412.5 7/2-			
2651.6	7/2-	1131.8 9		1519.1 9/2-	M1+E2 [#]	-3.7 [#] 1	
		1451 <mark>&</mark> 2		1201.7 7/2-			
2797.3	$(5/2^{-}, 9/2^{-})$	1595.6 <i>13</i>	100	1201.7 7/2-			Mult.: (M1+E2) (1978Al32).
							$ δ: +0.53 I2 \text{ or } +2.2 +I3-7 \text{ for a } 5/2^- \text{ to } 7/2^- \text{ transition; } -0.12 5 \text{ for } 9/2^- \text{ to } 7/2^- \text{ transition (1978AL32).} $
2862.4	$11/2^{+}$	789.3 7	31.6 14	2073.5 9/2+	M1(+E2) [#]	$-0.04^{\#}$ 4	
		1342.6 11	68.4 14	1519.1 9/2-	E1(+M2) [#]	$-0.09^{\#}$ 4	
3031.7	$13/2^{+}$	958.2.8	100	2073 5 9/2+	$E_{2}(+M_{3})^{\#}$	$-0.00^{\#}$ 1	
3160	13/2	1641	100	$1519.1 \ 9/2^{-1}$	E2(1015)	0.00 1	
3190.8	$11/2^{+}$	111739	100	2073 5 9/2+	M1+E2 [#]	$-1.60^{\#}$ 7	
3524.9	$9/2^+$, $13/2^+$	493.5 4	100	$3031.7 13/2^+$	1011 1 22	1.00 /	Mult.: E2 for a $9/2^+$ to $13/2^+$ transition: M1+E2 for a $13/2^+$ to $13/2^+$
	- 1) - 1						transition (1978AL32).
							$ δ: -0.00 I \text{ for a } 9/2^+ \text{ to } 13/2^+ \text{ transition; } -0.33 2 \text{ for a } 13/2^+ \text{ to } 13/2^- \text{ transition (1978AL32).} $
		1451 <mark>&</mark> 2		2073.5 9/2+			
3577.9	15/2+	546.2 4	100	3031.7 13/2+			
3628.5	13/2+, 17/2+	596.8 7	100	3031.7 13/2+			Mult.: M1+E2 if $J^{\pi}(3629)=13/2^+$; E2(+M3) if $J^{\pi}(3629)=17/2^+$ (1978Al32).
							δ : +0.39 9 for a 13/2 ⁺ to 13/2 ⁺ transition; +0.09 6 for a 17/2 ⁺ to 13/2 ⁺ transition (1978AL32).
3855.7	17/2+	824.0 5	100	3031.7 13/2+			
4199.1	$(17/2^+)$	343.4 3		3855.7 17/2+			
+221.1	10/2+	365.4 3		3855.7 17/2+			
+290.1	19/2	/12.2.4		$55/1.9$ $15/2^+$			
4744.ð 5227 1	$(23/2^{+})$	889.1 J 034 1		$3633.1 \ 11/2^{+}$ $4200 \ 1 \ 10/2^{+}$			

[‡] From 1977al35, except as noted. [#] From 1978Al32.

4

From ENSDF

 $^{67}_{31}{
m Ga}_{36}$ -4

⁶⁴Zn(α,pγ), ⁵³Cr(¹⁶O,pnγ) 1978Al32,1977Al35 (continued)

 $\gamma(^{67}\text{Ga})$ (continued)

[@] From 1974Ha09. [&] Part of unresolved doublets and triplets.

^{*a*} Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

S

⁶⁴Zn(α ,pγ), ⁵³Cr(¹⁶O,pnγ) 1978Al32,1977Al35

Level Scheme

Intensities: % photon branching from each level

⁶⁴Zn(α,pγ), ⁵³Cr(¹⁶O,pnγ) 1978Al32,1977Al35

Level Scheme (continued)

Intensities: % photon branching from each level

⁶⁷₃₁Ga₃₆

⁶⁴Zn(α,pγ), ⁵³Cr(¹⁶O,pnγ) 1978Al32,1977Al35

Level Scheme (continued)

Intensities: % photon branching from each level

⁶⁷₃₁Ga₃₆