		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 111, 1093 (2010)	3-Mar-2009
$Q(\beta^{-})=-2117 4$; S(n)=9138 4; S(p)=5101	4; $Q(\alpha) = -3362$ 4 201	12Wa38	
Note: Current evaluation has used the follo	wing Q record.		
$Q(\beta^{-})=-2100 \ 30; \ S(n)=9138 \ 3; \ S(p)=5102$	$2 3; Q(\alpha) = -3352 5$ 20)09AuZZ,2003Au03	
Additional information 1.			
Other reactions.			
$^{39}Co(^{12}C,n\alpha)$: E=60-85 MeV. Measured E	γ , I γ , σ (2008Ag06).		
Zn(p,X): E<27.5 MeV. Measured σ , excita	tion functions (2007Al41); $E = 31-141$ MeV. Measu	ared σ (2005Bo10); E=5-100 MeV.
Measured production σ (2005Sz02); E	=26-67 MeV. Measured j	production σ , excitation fu	nctions ($2005Ta01$); E=24-70 MeV.
Measured production σ (2003Sz01). E	=1 GeV. Measured isotop	pic σ (2007Na31).	
Zn(p,xn): E=4-40 MeV. Measured σ , excit	ation functions (2007Ud)2).	
Zn(d,X): E=19 MeV. Measured excitation	functions (2004Gr01); E=	=6-50 MeV. Measured exc	itation functions (2004Ta13); E=3-19
MeV. Measured excitation functions (2	003Bo15).		
⁶³ Cu(α ,n): E=5-45 MeV. Measured excitat	ion functions (2006Si18)		
$Cu(\alpha, X)$: E=16-60 MeV. Measured product	tion σ (2001Sz06); E=7-	40 MeV. Measured σ (200	OTa18); E=50 MeV. Measured $E\gamma$,
Ιγ (1997La03).			
⁶⁶ Zn(p,n): E=5-100 MeV. Measured produ	ction σ (2005Sz02); E=3	35-67 MeV. Measured proc	luction σ (2003Sz01); E=6-26 MeV.
Measured σ (1998Sz02).			
67 Zn(p,2n); E=6-26 MeV. Measured σ (19	98Sz02).		
⁶⁸ Zn(p,3n): E=20-71 MeV. Measured excit	ation functions (2002St3	1).	
⁶⁶ Zn(¹⁶ O, ⁹ N7p): E=60-95 MeV. Measured	excitation functions (20	06So07).	
63 Cu(16 O,3 α n): E=55-110 MeV. Measured	excitation functions (20	03Ch57).	
Cu(⁷ Li,X): E=35 MeV/nucleon. Measured	production σ (2004De41).	
Si(⁶⁸ Ga,X): E=50-60 MeV/nucleon. Measu	red reaction σ (2004Li2	9).	
Cu(³ He,X): E=3-36 MeV. Measured produ	ction σ (2002Ta23).		
Ge(γ ,X): E=150 MeV. Measured reaction y	yields (2001DiZZ).		
⁷⁰ Ge(n,X): E \approx 64 MeV. Measured reaction	yields (1997Na27).		

H-F analysis means Hauser-Feshbach analysis in this evaluation.

⁶⁶Ga Levels

Configuration: configurations used in the DWBA analysis of (α,d) data.

Cross Reference (XREF) Flags

			A B C	⁶⁶ Ge ε decay ⁵⁶ Fe(¹³ C,2np γ), ⁵² Cr(¹⁶ O,np γ) ⁶³ Cu(α ,n γ), ⁶⁴ Zn(α ,np γ)	D E F	$^{64}Zn(\alpha,d)$ $^{66}Zn(p,n\gamma)$ $^{66}Zn(^{3}He,t)$
E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF			Comments
0.0	0^{+}	9.49 h <i>3</i>	ABC EF	$\%\varepsilon + \%\beta^+ = 100$		
				J^{π} : spin from atomic beam (1976F)	u <mark>06</mark>);	π =+ from M1 from 1 ⁺ level.
				$T_{1/2}$: weighted average of 9.57 h 6	(195	6Ru45), 9.5 h 1 (1959Ca15), 9.33 h 8
				(1964Ru06), and 9.49 h 3 (2006) (1967Va13).	Ab30). Others: 9.45 h (1950La55) and 9.35 h
43.812 16	1+‡	18.0 ns 9	ABC E	$T_{1/2}$: from delayed- $\gamma\gamma$ coincidence	s in ^e	⁵⁶ Ge ε decay.
66.139 <i>19</i>	$(2)^{+}$	23.0 ns 14	ABC E	μ =1.01 2 (2005St24,1989Ra17)		
				J^{π} : 1 ⁺ ,2 ⁺ from M1+E2 to 1 ⁺ ; not	fed in	ε decay from 0 ⁺ .

Continued on next page (footnotes at end of table)

⁶⁶Ga Levels (continued)

E(level) [†]	\mathbf{J}^{π}	T _{1/2}	XREF	Comments
				$T_{1/2}$: weighted average of pulsed-beam delayed- γ coincidences: 23 ns 2 from
				63 Cu(α ,n γ) and 23 ns 2 from 66 Zn(p,n γ).
				μ : From time-dependent perturbed-angular distribution (TDPAD) of γ rays (1976Le03); does not include Knight shift correction
108.893 15	1+	1.2 ns 2	A CDE	J^{π} : 1 from $\gamma(\theta)$ in (p,n γ), J=2 from H-F analysis in (p,n γ); π =+ from M1 to
				0+.
1(2,472,20	$(2)^+$	10 5		$T_{1/2}$: from delayed- $\gamma\gamma$ coincidences in ⁶⁶ Ge ε decay.
162.472 20	$(3)^{-1}$	13 ns 5	ABC E	E(level): disagreement over the J [*] assignment and the γ branchings from this level in 66 Ge c decay (α pa) (α pp)) and (p pa) suggest that there may be
				a level doublet at this energy.
				J^{π} : there is some disagreement over the J^{π} assignment of this level. J=(3) from
				$\gamma(\theta)$ in $(\alpha, n\gamma)$ and $(\alpha, np\gamma)$; J=3 from H-F analysis in $(p, n\gamma)$. J=2 from
				$\gamma(\theta)$ of the 90y doublet in (p,ny). π = + from E2 to 1 . T _{1/2} : From pulsed-beam delayed- γ coincidences in (α .np γ) (1978Mo21). Other
				value: 4.2 ns 2 (1997KoZW).
234.043 17	2+		ACE	J^{π} : E2 to 0 ⁺ . Other: J=1,2 from $\gamma(\theta)$ in (p,n γ); J=2 from H-F analysis in
290 908 25	$(0,1)^+$		A F	(p,n γ). I=1.2 from $\gamma(\theta)$ in (p, n γ) I=2 rejected by incompatible $\delta(182\gamma)$ values from
2701700 20	(0,1)			$\gamma(\theta)$ in (p,ny) and $\alpha(K)$ exp in ⁶⁶ Ge ε decay; other: J=0.4 from H-F analysis
				in $(p,n\gamma)$; π =+ from M1 to 1 ⁺ .
335.404 20	$(2)^{+}$		E	J^{π} : 2 from $\gamma(\theta)$ in (p,n γ); J=1,2 from H-F analysis in (p,n γ); π =+ from M1
381 850 20	1+‡		ΔF	10 1 .
415 34 3	$(4)^+$	$<2^{\circ}$ ns	BCE	I^{π} : from $\gamma(\theta)$ and γ -decay systematics in $(\alpha n\gamma)$ $(\alpha nn\gamma)$ and H-F analysis
1101010	(1)	12 110		in $(p,n\gamma)$; π =+ from M1 to 162.4-keV [(3) ⁺] level.
423.77 3	$(3)^+$		E	J ^{π} : 3 from H-F analysis in (p,n γ); π =+ from M1 to 66.1-keV [(2) ⁺] level.
459.878 22	21		E	J [*] : 2 from $\gamma(\theta)$ and H-F analysis in (p,n γ); π =+ from M1+E2 to 43.8-keV [1 ⁺] level
516.20 4	$(4)^{+}$	<2 [@] ns	BC E	J^{π} : from $\gamma(\theta)$ and γ -decay systematics in $(\alpha, n\gamma)$, $(\alpha, np\gamma)$, and H-F analysis
				in $(p,n\gamma)$; π =+ from M1+E2 to 162.4-keV [(3) ⁺] level.
536.618 <i>21</i>	1+‡		A E	
552.90 3	$(3)^+$		CDE	J^{π} : from H-F analysis in (p,n γ); π =+ from M1 to 234.0-keV [(2) ⁺] level.
639.58 3	(2) $(3)^+$		E	J^{π} : 3 from H-F analysis in (p,ny); $\pi = +$ from M1 to 45.8-keV [1] level.
664.202 24	$(1,2)^+$		A E	J^{π} : 1,2 from H-F analysis in (p, γ); π =+ from M1 to 1 ⁺ level π =+ from M1
	. 4			to 43.8 -keV [1 ⁺] level.
705.995 21	1^{++}		A E	π : 2 from H E analysis in (n na); π + from M1 to 66.1 keV [(2) ⁺] level
721.89 5	(3)		C	J ^{π} : from $\gamma(\theta)$ and γ -decay modes in $(\alpha,n\gamma)$, $(\alpha,np\gamma)$.
790.08 <i>3</i>	$(1,2)^+$		E	J ^{π} : 1,2 from H-F analysis in (p,n γ); π =+ from M1 to 66.1-keV [(2) ⁺] level.
838.93 3	(2+2,4+)		DE	T^{T} ((4) ⁺ 1 1 ⁺ 2 ⁺ 1 1
845.03 5	$(2^{+}, 3, 4^{+})$	- 2 [@]	E DC E	J [*] : from gammas to (4) [*] and 1 [*] ,2 [*] levels.
865.33 0	(5)" 1 ⁺	<2 ms	A F	J^{*} : spin from $\gamma(\theta)$ of 448 γ and 701 γ in $(\alpha, n\gamma)$, $(\alpha, np\gamma)$. I^{π} : from log f_{\pm} 5 84 6 from 0 ⁺ and M1 E2 to 108 9-keV [1 ⁺] level
943.86 5	$(2^+,3,4^+)$		Ē	J^{π} : from gammas to (4) ⁺ and 1 ⁺ ,2 ⁺ levels.
974.48 4	$(1,2^+)$		A E	From γ to 0 ⁺ level.
998.62 7 1001 30 75	$(1^+, 2, 3^+)$		E ∆	J ^{<i>a</i>} : from gammas to 1^{+} , $(3)^{+}$ levels.
1018.31 17			E	
1062.12 22			Α	
1065.15 19	$(1^+, 2, 3^+)$		E A	J^{n} : gammas to 1 ⁺ , and (3) ⁺ .
1070.0 4			A E	
1141.99 10			с –	

Continued on next page (footnotes at end of table)

⁶⁶Ga Levels (continued)

E(level) [†]	J^{π}	T _{1/2}	XREF	Comments
1164.22 22 1210.20 <i>4</i>			A A	
1350.63 11	(5) [#]		BC	J^{π} : spin from $\gamma(\theta)$ of 935 γ and excitation functions in 63 Cu(α ,n γ),
1380 <i>30</i>	(6 ⁻)		D	Configuration= $((\pi p_{3/2})(\nu g_{9/2}))6^-$ J ^{π} : from DWBA analysis in (α .d).
1450			D	
1456.08 6	1+‡		A	
1464.33 <i>15</i>	(7) [#]	57.3 ns 14	BC	$\mu=+0.90 2; Q=0.78 4 (2005St24,1989Ra17)$ J ^π : from γ(θ) of 601γ and excitation functions in ⁶³ Cu(α,nγ), ⁶⁴ Zn(α,npγ). T _{1/2} : from pulsed-beam delayed-γ coincidences in ⁵⁶ Fe(¹³ C,2npγ), ⁵² Cr(¹⁶ O,npγ). Other value: 39 ns 2 (1997KoZW). μ: Other: +0.861 21 and +0.89 2 (1985Ra23) from time-dependent perturbed angular distribution (TDPAD) of γ rays. Q: From DPAD of γ rays (1985Ra23).
1513.37 <i>13</i>	(6) [#]		С	
1556.65 3	1+		Α	J ^{π} : from log ft=4.87 7 in ⁶⁶ Ge ε decay.
1573.7 <i>3</i>	1 ⁽⁺⁾		A C	J^{π} : from log ft=5.7 3 in ⁶⁶ Ge ε decay.
1617.66 21	(6) #		С	
1769.36 20	1+∓		A	
1774.90 <i>19</i>	(7) [#]		С	J^{π} : from 1268 γ decay of J^{π} =(9) level at 3043, γ decay to J=(6) level at 1513, and observed weakness of population in the reactions ⁶³ Cu(α ,n γ) and ⁶⁴ Zn(α ,np γ).
2408.43 25	(8) [#]		С	
2512.44 21	(8) [#]	$<2^{\textcircled{0}}$ ns	С	
2652.99 21	(9 ⁺) [#]	<2 [@] ns	BC	$\pi = (+)$ from M1 from $J^{\pi} = (9^+)$.
3043.45 18	$(9^+)^{\#}$	0.208 ns 8	BCD	μ =4.2 9 (2005St24,1989Ra17)
				 Configuration=((π g_{9/2})(ν g_{9/2}))9⁺ J^π=9⁺ suggested in (α,d) from strength of reaction σ, reaction systematics and shell model. μ: From integral perturbed angular correlation (IPAC) (1987Ba45). T_{1/2}: value quoted by 1987Ba45 without giving any details.
3362.3 <i>3</i>			С	1/2 ····· 1
3420.1 <i>3</i>	(10) [#]		С	
3850	(0+)		F	E(level): from 66 Zn(3 He,t), uncertainty unavailable. J ^{π} : IAR, L=(0) in 66 Zn(3 He,t).
4110.4 <i>3</i>	(10) [#]		С	
4162.1 <i>3</i> 4192.7 <i>3</i>	(11) [#]	<2 [@] ns	C C	
4271.7 4	(12) [#]		С	
4302.7 3			С	
5109.2 4	(13) [#]		С	J ^{π} : from $\gamma(\theta)$ and excitation functions in ⁶³ Cu(α ,n γ) and ⁶⁴ Zn(α ,np γ).

 † Deduced by evaluators from least-squares fit to adopted Ey data, except as noted.

[±] From log *ft* from 0⁺. [#] Assuming $J^{\pi}(162 \text{ level})=(3^+)$; from $\gamma(\theta)$ in ⁶³Cu($\alpha,n\gamma$), ⁶⁴Zn($\alpha,np\gamma$). [@] From prompt γ decay in ⁶³Cu($\alpha,n\gamma$), ⁶⁴Zn($\alpha,np\gamma$).

$\gamma(^{66}\text{Ga})$

 α (K)exp: From (p,n γ), unless indicated otherwise.

4

$E_i(level)$	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
43.812	1+	43.81 3	100	0.0 0)+	M1 ^b		0.700	α (K)exp=0.64 4; α (L)exp=0.092 7 α (K)=0.622 9; α (L)=0.0672 10; α (M)=0.00984 14; α (N+)=0.000516 8 α (N)=0.000516 8 B(M1)(W.u.)=0.0086 5 α (K)exp, α (L)exp: From ε decay.
66.139	(2)+	22.33 5	100	43.812 1	1+	M1+E2 ^b	0.079 <i>17</i>	6.0 5	α(L)exp=0.77 13 α(K)=5.1 4; α(L)=0.78 14; α(M)=0.112 20; α(N+)=0.0044 4 α(N)=0.0044 4 B(M1)(W.u.)=0.0122 12; B(E2)(W.u.)=2.5×10 ² 11 α(L)exp: From ε decay. δ: 0.079 17 from α(L)exp implies a large but acceptable E2 transition strength of 240 W.u. 120. $δ(E1+M2)=0.08$ from α(L)exp would imply an M2 transition strength of 1.3×10^4 W.u. +6-4
108.893	1+	42.69 8	16 5	66.139 ((2)+	[M1]		0.754	B(M1)(W.u.)=0.019 7 α (K)=0.670 10; α (L)=0.0724 11; α (M)=0.01060 16; α (N+)=0.000556 9 α (N)=0.000556 9
		65.09 2	56 4	43.812 1	1+	(M1+E2)	<0.04	0.231 5	
		108.90 2	100 6	0.0 0)+	M1 ^b		0.0555	$\alpha(K)\exp=0.050 4; \alpha(L)\exp=0.006 3$ B(M1)(W.u.)=0.0070 13 $\alpha(K)=0.0495 7; \alpha(L)=0.00523 8; \alpha(M)=0.000765 11;$ $\alpha(N+)=4.06\times10^{-5} 6$ $\alpha(N)=4.06\times10^{-5} 6$ $\alpha(K)\exp\alpha(L)\exp$; From ε decay; other: $\alpha(K)\exp=0.047 9$ from (p.ny).
162.472	(3)+	53.39 20	≤3.6	108.893 1	1+				I _y : there is serious disagreement over the relative branching of the 53y. According to ⁶⁶ Ge ε decay data the 53y is the major branch while I _Y (53)/I _Y (96)=0.03 from $\gamma\gamma(\theta)$ in (p,ny).
		96.34 2	100 11	66.139 ((2)+	(M1+E2)		0.4 4	$\begin{array}{l} \alpha(\text{K}) \exp = 0.059 \ 17 \\ \alpha(\text{K}) = 0.4 \ 4; \ \alpha(\text{L}) = 0.05 \ 4; \ \alpha(\text{M}) = 0.007 \ 6; \ \alpha(\text{N}+) = 0.00030 \ 25 \\ \alpha(\text{N}) = 0.00030 \ 25 \\ \text{Mult.: from } \gamma(\theta) \text{ in } (\alpha, n\gamma), \ (\alpha, np\gamma) \text{ and } \Delta J^{\pi}. \\ \delta: \ -0.2 \ +2-1 \ \text{if } J^{\pi}(162) = 3^{+} \ \text{from } \gamma(\theta) \text{ in } {}^{63}\text{Cu}(\alpha, n\gamma); \\ -0.5 \le \delta(\text{D}+\text{Q}) \le 0.0 \ \text{if } J^{\pi}(162) = 2 \ \text{from } \gamma(\theta) \text{ of the } 96\gamma \text{ doublet in } \\ (p,n\gamma). \end{array}$

						Adopt	ed Levels, G	ammas (conti	nued)
							$\gamma(^{66}\text{Ga})$ (continued)	
E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ} #	E_f	\mathbf{J}_f^{π}	Mult.	δ	$lpha^{\dagger}$	Comments
162.472	(3)+	118.80 20	0.4	43.812	1+	E2(+M3)		1.9 <i>16</i>	$\alpha(K)=1.6\ 13;\ \alpha(L)=0.24\ 20;\ \alpha(M)=0.04\ 3;\ \alpha(N+)=0.0016\ 14$ $\alpha(N)=0.0016\ 14$ E : reported in (α pc) (α pc); weak in (p pc)
									Q+O from $\gamma(\theta)$ in $(\alpha, n\gamma)$; (2+M3 from RUL. $\delta(\text{E2+M3})$ =-0.2 2 if $J^{\pi}(162)$ =3 ⁺ , $\delta(\text{D+Q})$ =+0.9 2 if J(162)=2; from $\gamma(\theta)$ in $(\alpha, n\gamma)$.
234.043	2^{+}	71.51 4	2.6 4	162.472	$(3)^+$	[D]		0.178	$\alpha(K) = 0.1562; \alpha(L) = 0.0163$
		125.15 3	6.0 5	108.893	I ⁺	M1+E2°		0.17 14	α (K)exp=0.040 / α (K)=0.15 <i>12</i> ; α (L)=0.017 <i>14</i> ; α (M)=0.0025 <i>20</i> ; α (N+)=0.00012 <i>9</i> α (N)=0.00012 <i>9</i>
						ha			<i>δ</i> : −4.0 5 for $J^{\pi}(234)=2^+$,−0.34 <i>10</i> for $J^{\pi}(234)=1^+$ from $\gamma(\theta)$ in ⁶³ Cu(<i>α</i> ,n <i>γ</i>). <0.24 from <i>α</i> (K)exp in (p,n <i>γ</i>).
		190.21 2	100 6	43.812	1+	M1+E2 ^{DC}	0.27 10	0.016 3	α (K)exp=0.0144 <i>19</i> α (K)=0.0145 <i>24</i> ; α (L)=0.0015 <i>3</i> ; α (M)=0.00022 <i>4</i> ; α (N+,)=1.17×10 ⁻⁵ <i>18</i>
									$\alpha(N)=1.17\times10^{-5}$ 18
									α (K)exp: From ε decay; other: 0.0118 21 from (p,n γ). Mult δ : from α (K)exp=0.0144 10 in ⁶⁶ Ge c decay $\delta = \pm 0.11$ 3 if
									J(234 level)=2, $\delta = -1.2$ 7 if J(234)=1 from $\gamma(\theta)$ in ⁶⁶ Zn(p,n $\gamma)$. $\delta = +0.05$ if J(234 level)=2, $\delta = +1.6$ 10 if J(234 level)=1 from
		233.98 4	1.3 <i>3</i>	0.0	0^{+}	E2 ^{<i>c</i>}		0.0291	$\alpha(K) \exp[=0.024 7]$
									$\alpha(K)=0.0259 \ 4; \ \alpha(L)=0.00281 \ 4; \ \alpha(M)=0.000408 \ 6; \ \alpha(N+)=2.02\times10^{-5} \ 3 \ \alpha(N)=2.02\times10^{-5} \ 3$
290.908	$(0,1)^+$	182.03 4	100 6	108.893	1^{+}	M1+E2 ^{<i>cb</i>}	-0.22 12	0.017 4	$\alpha(N) = 2.02 \times 10^{-5}$ $\alpha(K) \exp = 0.0131 \ 24$
	(*)-)								$\alpha(K) = 0.015 \ 3; \ \alpha(L) = 0.0016 \ 4; \ \alpha(M) = 0.00024 \ 5; \ \alpha(N+) = 1.23 \times 10^{-5} \ 24$
									$\alpha(N)=1.23\times10^{-5}$ 24
									$(p,n\gamma)$.
									Mult.: from $\alpha(K)\exp=0.0115$ 15 in ⁶⁶ Ge ε decay.
									δ: from $\gamma(\theta)$ in ⁶⁰ Zn(p,n γ). δ =+0.20 4 for J(291 level)=2 is incompatible with δ <0.06 from α (K)exp in ⁶⁶ Ge ε decay. δ <0.23 from α (K)exp in (p,n γ).
225 404	(2)+	247.08 6	1.3 4	43.812	1^+			0.05.4	
333.404	(2)'	172.95 3	9.0 11	162.472	(3)'	MI+E2°		0.05 4	$\alpha(\mathbf{K})\exp=0.0153.51$ $\alpha(\mathbf{K})=0.05.4$; $\alpha(\mathbf{L})=0.005.4$; $\alpha(\mathbf{M})=0.0008.6$; $\alpha(\mathbf{N}+)=3.7\times10^{-5}.25$ $\alpha(\mathbf{N})=3.7\times10^{-5}.25$
		226 50 2	216 25	100 002	1+	M1 + E2	10.00.2	0 000 16 20	δ : <0.25 from α(K)exp in (p,nγ).
		220.30 3	34.0 23	108.893	1.	W11+E2	+0.09 3	0.00840 20	α (K)exp=0.0076 14 α =0.00846 20; α (K)=0.00756 17; α (L)=0.000784 19; α (M)=0.000115 3; α (N+)=6.14×10 ⁻⁶ 14
									$\alpha(N)=6.14\times10^{-6}$ 14

S

	Adopted Levels, Gammas (continued)													
	γ ⁽⁶⁶ Ga) (continued)													
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ} #	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	δ	α^{\dagger}	Comments						
		269.27 3	35 4	66.139 (2) ⁺	M1+E2 ^c		0.011 6	Mult.: from $\gamma(\theta)$ and $\alpha(K)exp$ in $(p,n\gamma)$. δ : from $\gamma(\theta)$ in $(p,n\gamma)$; <0.28 from $\alpha(K)exp$ in $(p,n\gamma)$. $\alpha(K)exp=0.0047 \ 9$ $\alpha(K)=0.010 \ 6$; $\alpha(L)=0.0011 \ 6$; $\alpha(M)=0.00016 \ 9$; $\alpha(N+)=8.E-6 \ 5$ $\alpha(N)=8.E-6 \ 5$ δ : +0.18 δ or +1.40 15 from $\gamma(\theta)$ in ${}^{66}Zn(p,n\gamma)$; <0.28 from						
		291.59 <i>3</i>	100 6	43.812 1+	M1+E2 ^{<i>c</i>}	+0.04 4	0.00444 8	α (K)exp in (p,n γ). α (K)exp=0.0039 7						

 $_{31}^{66}$ Ga $_{35}$ -6

	Adopted Levels, Gammas (continued)												
							$\gamma(^{66}\text{Ga})$ (c	continued)					
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments				
	_												
381.859	1+	90.94 5	1.4 4	290.908	(0,1)+	[M1]		0.0904	$\alpha(K)=0.0806 \ I2; \ \alpha(L)=0.0856 \ I2; \ \alpha(M)=0.001252 \ I8; \ \alpha(N+)=6.64 \times 10^{-5} \ I0 \ \alpha(N+)=6.64 \times 10^{-5} \ I0$				
		147.79 <i>3</i>	4.6 9	234.043	2+	[M1]		0.0247	$\alpha(N)=0.04\times10^{-10}$ $\alpha(K)=0.0220 \ 3; \ \alpha(L)=0.00231 \ 4; \ \alpha(M)=0.000338 \ 5; \ \alpha(N+)=1.80\times10^{-5} \ 3$				
		272.97 4	37.4 13	108.893	1+	M1+E2 ^c	+0.24 10	0.0058 6	$\alpha(\mathbf{N}) = 1.00 \times 10^{-5} \text{ s}$ $\alpha(\mathbf{K}) \exp = 0.0048 \ 9$ $\alpha = 0.0058 \ 6; \ \alpha(\mathbf{K}) = 0.0052 \ 5; \ \alpha(\mathbf{L}) = 0.00054 \ 6; \ \alpha(\mathbf{M}) = 7.9 \times 10^{-5} \text{ s};$ $\alpha(\mathbf{N}) = 4.2 \times 10^{-6} \ 4$ $\alpha(\mathbf{N}) = 4.2 \times 10^{-6} \ 4$				
		315 55 13	2 00 10	66 130	$(2)^{+}$				δ: from $\gamma(\theta)$ in (p,n γ); <0.34 from α (K)exp in (p,n γ).				
		338.05 3	31.0 20	43.812	(2) 1 ⁺	M1+E2 ^C	-0.05 9	0.00311 9	α (K)exp=0.0030 7 α =0.00311 9; α (K)=0.00278 8; α (L)=0.000286 9; α (M)=4.18×10 ⁻⁵ 13; α (N+)=2.25×10 ⁻⁶ 7 α (N)=2.25×10 ⁻⁶ 7 δ ; from $\gamma(\theta)$ in (p.ny); <0.53 from α (K)exp in (p.ny).				
		381.85 5	100	0.0	0+	M1 ^{cb}		0.00232 4	$\begin{aligned} \alpha(K) &\exp[=0.00208 \\ \alpha &= 0.00232 \ 4; \ \alpha(K) &= 0.00208 \ 3; \ \alpha(L) &= 0.000213 \ 3; \\ \alpha(M) &= 3.11 \times 10^{-5} \ 5; \ \alpha(N+) &= 1.678 \times 10^{-6} \ 24 \\ \alpha(N) &= 1.678 \times 10^{-6} \ 24 \\ \alpha(K) &\exp: \text{ From } (p,n\gamma) \text{ used for normalization; } 0.0020 \ 3 \ \text{from } \varepsilon \end{aligned}$				
415.34	(4)+	252.89 3	100 7	162.472	(3)+	M1 ^c		0.00628 9	$\begin{array}{l} \alpha(\text{K}) \exp = 0.0060 \ 11 \\ \text{B}(\text{M1})(\text{W.u.}) > 0.00065 \\ \alpha = 0.00628 \ 9; \ \alpha(\text{K}) = 0.00561 \ 8; \ \alpha(\text{L}) = 0.000580 \ 9; \\ \alpha(\text{M}) = 8.49 \times 10^{-5} \ 12; \ \alpha(\text{N}+) = 4.56 \times 10^{-6} \ 7 \\ \alpha(\text{N}) = 4.56 \times 10^{-6} \ 7 \\ \delta(\text{Q/D}) = +0.03 \ 10 \ \text{from} \ (\alpha, n\gamma); \ +0.17 \ 10 \ \text{from} \ \gamma(\theta) \ \text{in} \ (\alpha, np\gamma); \\ < 0.35 \ \text{from} \ \alpha(\text{K}) \exp \ \text{in} \ (p, n\gamma). \end{array}$				
423.77	$(3)^{+}$	349.16 <i>21</i> 189.91 <i>10</i>	4.1 <i>14</i> 22 <i>3</i>	66.139 234.043	$(2)^+$ 2 ⁺								
- • • •	<u> </u>	261.30 3	100 8	162.472	(3)+	M1 ^{<i>c</i>}		0.00580 9	α (K)exp=0.0054 <i>11</i> α =0.00580 <i>9</i> ; α (K)=0.00518 <i>8</i> ; α (L)=0.000535 <i>8</i> ;				

 \neg

					Adop	ted Levels, Ga	<mark>mmas</mark> (continue	ed)
						$\gamma(^{66}\text{Ga})$ (co	ontinued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	$\mathbf{E}_f \qquad \mathbf{J}_f^{\pi}$	Mult.	δ	$lpha^\dagger$	Comments
423.77	(3)+	357.62 3	89 5	66.139 (2) ⁺	M1 ^c		0.00271 4	$\begin{aligned} \alpha(M) = 7.82 \times 10^{-5} \ 11; \ \alpha(N+) = 4.20 \times 10^{-6} \ 6 \\ \alpha(N) = 4.20 \times 10^{-6} \ 6 \\ \alpha(K) \exp = 0.0024 \ 5 \\ \alpha = 0.00271 \ 4; \ \alpha(K) = 0.00242 \ 4; \ \alpha(L) = 0.000248 \ 4; \\ \alpha(M) = 3.64 \times 10^{-5} \ 5; \ \alpha(N+) = 1.96 \times 10^{-6} \ 3 \\ \alpha(N) = 1.96 \times 10^{-6} \ 3 \end{aligned}$
459.878	2^{+}	124.54 10	2.3 9	335.404 (2)+				
		225.82 11	3.4 9	234.043 2+				E_{γ} : $E\gamma$ =225.93 24 observed in ⁶⁶ Ge ε decay is shown deexciting the 291-keV level where it gave a poor fit to the level energy difference. The adopted gammas placement follows from the coincidence data of 1994Ti02 in (p,n γ).
		297.38 5	4.4 10	$162.472 (3)^+$		0		
		351.01 3	33.7 24	108.893 1+	M1+E2 ^c	≈+0.1 [@]	≈0.00287	$\alpha(K) \exp = 0.0024 5$ $\alpha \approx 0.00287; \ \alpha(K) \approx 0.00257; \ \alpha(L) \approx 0.000264;$ $\alpha(M) \approx 3.86 \times 10^{-5}; \ \alpha(N+) \approx 2.08 \times 10^{-6}$ $\alpha(N) \approx 2.08 \times 10^{-6}$
		393.67 4	11.7 <i>13</i>	66.139 (2) ⁺	M1 ^C		0.00216 <i>3</i>	$\alpha(K) \exp = 0.0019 \ 4$ $\alpha = 0.00216 \ 3; \ \alpha(K) = 0.00193 \ 3; \ \alpha(L) = 0.000198 \ 3;$ $\alpha(M) = 2.89 \times 10^{-5} \ 4; \ \alpha(N+) = 1.562 \times 10^{-6} \ 22$ $\alpha(N) = 1.562 \times 10^{-6} \ 22$
		416.02 3	100 7	43.812 1+	M1+E2 ^c	+0.03 [@] 3	0.00190 3	$\alpha(K)\exp=0.0016 \ 3$ $\alpha=0.00190 \ 3; \ \alpha(K)=0.001701 \ 25; \ \alpha(L)=0.0001738 \ 25;$ $\alpha(M)=2.54\times10^{-5} \ 4; \ \alpha(N+)=1.373\times10^{-6} \ 2$ $\alpha(N)=1.373\times10^{-6} \ 20$
516.20	$(4)^+$	101.0 <i>3</i>		415.34 (4)+				
		353.75 3	100 6	162.472 (3) ⁺	M1+E2 ^c	+0.0 1	0.00278 6	$\begin{array}{l} \alpha(\mathrm{K}) \exp = 0.0025 \ 5 \\ \mathrm{B}(\mathrm{M1})(\mathrm{W.u.}) > 0.00022 \\ \alpha = 0.00278 \ 6; \ \alpha(\mathrm{K}) = 0.00249 \ 5; \ \alpha(\mathrm{L}) = 0.000255 \ 6; \\ \alpha(\mathrm{M}) = 3.73 \times 10^{-5} \ 8; \ \alpha(\mathrm{N}+) = 2.01 \times 10^{-6} \ 4 \\ \alpha(\mathrm{N}) = 2.01 \times 10^{-6} \ 4 \\ \delta: \ \mathrm{from} \ \gamma(\theta) \ \mathrm{in} \ {}^{63}\mathrm{Cu}(\alpha,\mathrm{n}\gamma), \ {}^{64}\mathrm{Zn}(\alpha,\mathrm{np}\gamma); \ < 0.41 \ \mathrm{from} \\ \alpha(\mathrm{K}) \exp \ \mathrm{in} \ (\mathrm{p},\mathrm{n}\gamma). \end{array}$
536.618	1+	449.99 5 154.74 3	11.4 20 4.2 4	$\begin{array}{rrr} 66.139 & (2)^{+} \\ 381.859 & 1^{+} \end{array}$	[M1]		0.0219	α (K)=0.0195 3; α (L)=0.00204 3; α (M)=0.000299 5; α (N+)=1.597×10 ⁻⁵ 23 α (N)=1.597×10 ⁻⁵ 23
		245.71 <i>3</i>	73 3	290.908 (0,1)+	M1 ^C		0.00675 10	$\alpha(K) = 1.57 \times 10^{-2.5}$ $\alpha(K) = 0.0063 \ 12$ $\alpha = 0.00675 \ 10; \ \alpha(K) = 0.00603 \ 9; \ \alpha(L) = 0.000623 \ 9;$ $\alpha(M) = 9.12 \times 10^{-5} \ 13; \ \alpha(N+) = 4.90 \times 10^{-6} \ 7$ $\alpha(N) = 4.90 \times 10^{-6} \ 7$
		302.52 3	34 <i>3</i>	234.043 2+				
		427.83 6	7.2 15	108.893 1+				

 ∞

 $_{31}^{66}$ Ga $_{35}$ -8

$\gamma(^{66}\text{Ga})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	Eγ‡	$I_{\gamma}^{\#}$	$E_f J_f^{\pi}$	Mult.	α^{\dagger}	Comments
536.618	1+	470.62 <i>6</i> 492.63 <i>15</i> 536.74 <i>7</i>	100 5 8.3 4 83 3	$\begin{array}{c} 66.139 \\ 43.812 \\ 0.0 \\ 0^+ \end{array} \\ \begin{array}{c} (2)^+ \\ 1^+ \\ 0.0 \\ 0^+ \end{array}$	M1 ^c	0.001060 15	α (K)exp=0.0010 2 α =0.001060 15; α (K)=0.000949 14; α (L)=9.65×10 ⁻⁵ 14; α (M)=1.411×10 ⁻⁵ 20; α (N+)=7.64×10 ⁻⁷ α (N)=7.64×10 ⁻⁷ 11
552.90	(3)+	137.56 <i>4</i> 217.53 <i>13</i> 318.85 <i>3</i>	13 <i>3</i> 2.6 <i>19</i> 77 6	415.34 (4) ⁺ 335.404 (2) ⁺ 234.043 2 ⁺	M1+E2 ^C	0.007 3	α (K)exp=0.0030 7 α =0.007 3; α (K)=0.006 3; α (L)=0.0006 3; α (M)=9.E-5 5; α (N+)=4.7×10 ⁻⁶ 21
		390.44 <i>5</i>	31 3	162.472 (3) ⁺	M1 ^c	0.00220 3	$\begin{aligned} &\alpha(N) = 4.7 \times 10^{-6} \ 21 \\ &\delta: +0.0 \ 1 \ \text{for } J=3 \ \text{to } J=2 \ \text{transition, from } \gamma(\theta) \ \text{in } (\alpha,n\gamma), \ (\alpha,np\gamma), \ \text{and} \\ &(p,n\gamma); \ <0.32 \ \text{from } \alpha(K) \text{exp in } (p,n\gamma). \\ &\alpha(K) \text{exp} = 0.0022 \ 5 \\ &\alpha=0.00220 \ 3; \ \alpha(K) = 0.00197 \ 3; \ \alpha(L) = 0.000202 \ 3; \ \alpha(M) = 2.95 \times 10^{-5} \ 5; \\ &\alpha(N+) = 1.592 \times 10^{-6} \ 23 \end{aligned}$
		486.75 7	100 7	66.139 (2)+	M1 ^c	0.001323 19	$ \begin{array}{l} \alpha(\mathrm{N}) = 1.592 \times 10^{-6} \ 23 \\ \alpha(\mathrm{K}) \exp = 0.0012 \ 2 \\ \alpha = 0.001323 \ 19; \ \alpha(\mathrm{K}) = 0.001183 \ 17; \ \alpha(\mathrm{L}) = 0.0001206 \ 17; \ \alpha(\mathrm{M}) = 1.764 \times 10^{-5} \\ 25 \end{array} $
620.98	(2)+	285.65 7 386.85 5	3.2 <i>15</i> 39 <i>3</i>	335.404 (2) ⁺ 234.043 2 ⁺	M1 ^c	0.00225 4	$\alpha(N)=9.54\times10^{-7} \ 14$ $\alpha(K)\exp=0.0020 \ 4$ $\alpha=0.00225 \ 4; \ \alpha(K)=0.00201 \ 3; \ \alpha(L)=0.000206 \ 3; \ \alpha(M)=3.02\times10^{-5} \ 5; \ \alpha(N+)=1.627\times10^{-6} \ 23$
		458.52 4	37 3	162.472 (3)+	M1 ^C	0.001517 22	$\alpha(N)=1.627\times10^{-6} 23$ $\alpha(K)\exp=0.0014 3$ $\alpha=0.001517 22; \ \alpha(K)=0.001357 19; \ \alpha(L)=0.0001384 20; \ \alpha(M)=2.02\times10^{-5} 3; \ \alpha(N+)=1.094\times10^{-6}$
		577.18 <i>3</i>	100 10	43.812 1+	M1 ^C	0.000901 <i>13</i>	$\alpha(N)=1.094\times10^{-6} \ 76$ $\alpha(K)\exp=0.00080 \ 16$ $\alpha=0.000901 \ 13; \ \alpha(K)=0.000806 \ 12; \ \alpha(L)=8.19\times10^{-5} \ 12; \ \alpha(M)=1.198\times10^{-5}$ $17; \ \alpha(N+)=6.49\times10^{-7}$ $\alpha(N)=6.49\times10^{-7} \ 0$
639.58	(3)+	215.94 <i>17</i> 224.29 <i>11</i> 304.16 <i>4</i> 405.65 <i>10</i>	1.9 <i>14</i> 3.5 <i>16</i> 17.8 24 3.2 <i>16</i>	$\begin{array}{rrrr} 423.77 & (3)^+ \\ 415.34 & (4)^+ \\ 335.404 & (2)^+ \\ 234.043 & 2^+ \end{array}$			u(11)-0.47×10 7
		477.12 3	100 8	162.472 (3)+	M1 ^C	0.001384 20	α (K)exp=0.0011 2 α =0.001384 20; α (K)=0.001239 18; α (L)=0.0001262 18; α (M)=1.85×10 ⁻⁵ 3;

9

	Adopted Levels, Gammas (continued)												
	$\gamma(^{66}\text{Ga})$ (continued)												
E _i (level)	J_i^{π}	Eγ‡	$I_{\gamma}^{\#}$	E _f	${ m J}_f^\pi$	Mult.	α^{\dagger}	Comments					
								$\alpha(N+)=9.99\times10^{-7}$					
639.58	$(3)^{+}$	573.46 5	24 4	66.139	$(2)^{+}$	M1+E2 ^C	0.0012 3	$\alpha(\mathbf{N}) = 9.99 \times 10^{-174}$ $\alpha(\mathbf{K}) = 0.0010 \ 2$					
								α =0.0012 3; α (K)=0.00105 23; α (L)=0.000107 25; α (M)=1.6×10 ⁻⁵ 4;					
								$\alpha(N+)=8.4\times10^{-7}$ 18					
								$\alpha(N) = 8.4 \times 10^{-1} I8$ $\delta < 24$ from $\alpha(K) \exp in (n ny)$					
664.202	$(1,2)^+$	328.80 12	14.4 25	335.404	$(2)^{+}$			$0. (2.4 \text{ from } u(\mathbf{x}) \circ \mathbf{x} \mathbf{p} \text{ in } (\mathbf{p}, \mathbf{n} \mathbf{y}).$					
		430.11 19		234.043	2+								
		501.66 5	12.2 25	162.472	$(3)^+$								
		598.06 3	100 9	66.139	$(2)^{+}$	M1 ^{<i>c</i>}	0.000833 12	$\alpha(K) \exp = 0.00073 \ 14$					
								α =0.000833 <i>12</i> ; α (K)=0.000745 <i>11</i> ; α (L)=7.56×10 ⁻⁵ <i>11</i> ;					
								$\alpha(M) = 1.107 \times 10^{-5} \ 16; \ \alpha(N+) = 5.99 \times 10^{-7}$					
		620 41 3	62.6	12 812	1+	м1 <mark>с</mark>	0 000768 11	$\alpha(N) = 5.99 \times 10^{-7} \ 9$					
		020.41 5	03 0	43.012	1	IVII	0.000708 11	$\alpha(\mathbf{K})\exp[-0.00074, 14]$ $\alpha=0.000768, 11; \alpha(\mathbf{K})=0.000687, 10; \alpha(\mathbf{L})=6.97\times10^{-5}, 10;$					
								$\alpha(M)=1.020\times10^{-5}$ 15; $\alpha(N+)=5.53\times10^{-7}$					
								$\alpha(N)=5.53\times10^{-7} 8$					
705 005	1+	664.15 18	3.1 19	0.0	0^+ (1.2) ⁺	וחו	0.85.3	$\alpha(K) = 0.74; \alpha(I) = 0.08$					
105.995	1	169.47 10	4 2	536.618	(1,2) 1 ⁺	[D] [M1]	0.01729	$\alpha(K)=0.01543\ 22;\ \alpha(L)=0.001611\ 23;\ \alpha(M)=0.000236\ 4;$					
								$\alpha(N+)=1.261\times10^{-5}$ 18 $\alpha(N)=1.261\times10^{-5}$ 18					
		246.1 4		459.878	2^{+}								
		323.8 3	3.3 7	381.859	1^+								
		370.9 5	9913	335.404 290.908	$(2)^{+}$ $(0,1)^{+}$								
		472.00 11	76 5	234.043	2^+								
		597.14 <i>4</i>	5.9 7	108.893	1+								
		639.74 <i>11</i> 662 19 5	13.8 7	66.139 43.812	$(2)^{+}$								
		705.94 3	100 5	43.812	0^{+}	M1 ^{<i>c</i>}	0.000579 9	$\alpha(K) \exp = 0.00053 \ 12$					
								α =0.000579 9; α (K)=0.000519 8; α (L)=5.25×10 ⁻⁵ 8; α (M)=7.68×10 ⁻⁶ <i>II</i> ; α (N+)=4.16×10 ⁻⁷ 6 α (N)=4.16×10 ⁻⁷ 6					
721.89	$(3)^{+}$	386.43 19	18 4	335.404	$(2)^{+}$								
		487.93 8	67 7	234.043	2^+								
		559.40 5 655 75 3	33 5 100 11	162.472	$(3)^+$ $(2)^+$	M1 ^C	0 000680 10	$\alpha(K) \exp = 0.00053 \ 14$					
		000.100	100 11	00.157	(2)	1411	0.000000 10	α = 0.000680 <i>10</i> ; α (K) = 0.000609 <i>9</i> ; α (L) = 6.17×10 ⁻⁵ <i>9</i> ; α (M) = 9.03×10 ⁻⁶					

						Adopted L	evels, Gamma	s (continued)
						<u> </u>	(⁶⁶ Ga) (continu	ued)
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_{f}^{π}	Mult.	$lpha^{\dagger}$	Comments
782.04	(2)	719.0.2	100	66 120	(2)+			<i>13</i> ; α (N+)=4.89×10 ⁻⁷ 7 α (N)=4.89×10 ⁻⁷ 7 β (Q)=0.02 10 from α (Q) in (2, ma) (2, ma)
785.90	(3) $(1,2)^+$	150.68 7	3.3 17	639.58	(2) $(3)^+$	(D)		$\partial(Q/D) = -0.02 \ T0 \ \text{from } \gamma(\theta) \ \text{in } (\alpha, n\gamma), \ (\alpha, np\gamma).$
		253.46 14	4.7 17	536.618	1+			
		330.10 4	18.1 25	459.878	2+			
		408.15 23	1.9 17	381.859	1+			
		556.16 25	12 3	234.043	2			
		724 00 3	9.7 19	66 130	$(2)^+$	M1 ^C	0.000549.8	$\alpha(K) \exp{-0.00047}$ 11
		724.00 5	100 11	00.159	(2)	1411	0.000549 0	$\alpha = 0.000549 \ 8 \ \alpha(K) = 0.000491 \ 7 \ \alpha(L) = 4.97 \times 10^{-5} \ 7 \ \alpha(M) = 7.27 \times 10^{-6}$
								$11: \alpha(N+1) = 3.94 \times 10^{-7} 6$
								$\alpha(N)=3.94\times10^{-7} 6$
		746.24 8	6.4 19	43.812	1+			
838.93		132.86 9	53	705.995	1+			
		302.18 14	44 8	536.618	1+			
		457.04 21	15 4	381.859	1+			
		730.03 3	40 5	108.893	1^{+}			
		705 16 5	2/ 5	42 812	$(2)^{+}$			
845 03	$(2^+ 3 4^+)$	429 82 10	18 3	45.012	$(4)^+$			
015.05	(2,,5,1)	611.03 8	16 4	234.043	2+			
		682.5 <i>3</i>		162.472	$(3)^+$			
		778.84 5	100 9	66.139	$(2)^{+}$	M1,E2 ^C	0.00054 7	α(K)exp=0.00046 13
								α =0.00054 7; α (K)=0.00048 6; α (L)=4.9×10 ⁻⁵ 7; α (M)=7.1×10 ⁻⁶ 10; α (N+)=3.8×10 ⁻⁷ 5
0(2.55	(5)	247 21 10		516.00	$(A)^{\pm}$			$\alpha(N) = 3.8 \times 10^{-7} 5$
803.33	(3)	547.51 19 448 23 5	100.73	510.20 415 34	$(4)^{+}$ $(4)^{+}$	(D)		$\delta(\Omega/D) = -0.1.1$ from $\alpha(\theta)$ in (α, p_{α}) (α, p_{α})
		700.94 15	19.6	162.472	$(3)^+$	(D) (O(+O))		$\delta(Q/D) = -0.1 I \text{ from } \gamma(\theta) \text{ in } (\alpha, n\gamma), (\alpha, np\gamma).$
866.09	1^{+}	201.1 3	13 4	664.202	$(1,2)^+$	(2(10))		(0, 2) $(0, 1)$ $(0, 1)$ $(0, 1)$ $(0, 1)$ $(0, 1)$
		484.11 20	13 4	381.859	1+			
		530.74 17	14 <i>3</i>	335.404	$(2)^{+}$			
		575.30 27	17 3	290.908	$(0,1)^+$			
		757.31 17	100 4	108.893	1+	M1,E2 ^C	0.00057 8	$\alpha(K) \exp = 0.00048 \ I2$
								$\alpha = 0.00057 \ 8; \ \alpha(\text{K}) = 0.00051 \ 7; \ \alpha(\text{L}) = 5.2 \times 10^{-3} \ 8; \ \alpha(\text{M}) = 7.6 \times 10^{-6} \ 11; \ \alpha(\text{N}+) = 4.1 \times 10^{-7} \ 6$
1		700 2 1	35 26	66 130	$(2)^{+}$			$\alpha(N) = 4.1 \times 10^{-1} 0$
		199.2 4 821 80 15	5.5 20 <18	43 812	(2) 1 ⁺			
		866.20 6	30.3	0.0	0^{+}			
943.86	$(2^+, 3, 4^+)$	427.55 23		516.20	$(4)^{+}$			

 $_{31}^{66}\text{Ga}_{35}$ -11

$\gamma(^{66}\text{Ga})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	${\rm E_{\gamma}}^{\ddagger}$	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Comments
943.86	$(2^+ 3 4^+)$	608 07 26		335 404	$(2)^{+}$	
715.00	(2,,3,1)	709.75 9	20.6	234.043	2+	
		781 40 17	13.6	162,472	$(3)^{+}$	
		877.75.5	100 10	66.139	$(2)^+$	
974.48	(1.2^{+})	683.55 14	100 10	290,908	$(0,1)^+$	
<i>y</i> ,o	(1,2)	740.53 8	18.5	234.043	2+	
		812.4.4	7.5	162.472	$(3)^{+}$	
		865.7 4	54	108.893	1+	
		908.12 8	100 9	66.139	$(2)^{+}$	
		930.67 11	26 5	43.812	1+	
		974.56 7	36 5	0.0	0^{+}	I_{α} : relative branchings of all these gammas are different in ε decay and $(p, n\gamma)$ reaction.
998.62	$(1^+, 2, 3^+)$	461.96 15	41 14	536.618	1+	,
		575.0 <i>3</i>	35 18	423.77	$(3)^{+}$	
		889.77 10	63 14	108.893	1+	
		932.43 9	100 18	66.139	$(2)^{+}$	
		955.0 5	57 16	43.812	1+	
1001 39		619 46 ^d 15	<100	381 859	1+	
1001.59		892.06.20	67 33	108 893	1+	
		935.68.20	50 10	66.139	$(2)^{+}$	
1018.31		602.82.19	81 42	415.34	$(4)^+$	
1010101		856.2.3	100.50	162.472	$(3)^+$	
1062.12		196.1 3		866.09	1+	I_{γ} : weak γ with large uncertainty in I_{γ} in ε decay.
		995.9 <i>3</i>	100 27	66.139	$(2)^{+}$	
1065.15	$(1^+, 2, 3^+)$	683.1 <i>3</i>		381.859	1+	
		730.1 5		335.404	$(2)^{+}$	
		902.8 4	100 19	162.472	$(3)^{+}$	
		956.5 5	26 14	108.893	1+	
		1020.9 6		43.812	1^{+}	
1076.6		370.5 5	100	705.995	1^{+}	I_{γ} : weak γ with large uncertainty in ε decay.
		1010.5 5	30	66.139	$(2)^{+}$	I_{γ} : weak γ with large uncertainty in ε decay.
1081.2		699.2 4		381.859	1^{+}	
		972.6 5	100 33	108.893	1^{+}	
1141.99		358.2 2	86	783.96	(3)	
		420.2 2	71	721.89	$(3)^{+}$	
		588.9 <i>2</i>	49	552.90	$(3)^+$	
		726.6 2	100	415.34	$(4)^+$	
1164.22		782.3 4	100	381.859	1+	
		1120.42 25	50	43.812	1+	I_{γ} : weak γ ray with large uncertainty.
1210.20		1101.26 4	100 13	108.893	1+	
1000		1144.13 6	23 13	66.139	(2)+	
1350.63	(5)	208.6 2	5	1141.99	(5)	
		487.2 2	<27	863.55	(5)	E_{γ} : doublet in $(\alpha, n\gamma)$; multiply placed.
		833.8		516.20	$(4)^{+}$	$E\gamma$, $I\gamma$: energy uncertainty and relative branching unavailable.

12

						Adopted	Levels, Gamm	as (continued)	
							$\gamma(^{66}\text{Ga})$ (contin	nued)	
E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	$I_{\gamma}^{\#}$	E_f	\mathbf{J}_f^{π}	Mult.	δ	α^{\dagger}	Comments
1350.63	(5)	935.1 2	100	415.34	$(4)^+$	(D)			$\delta(Q/D) = +0.0 \ I \ \text{from } \gamma(\theta) \ \text{in } {}^{63}\text{Cu}(\alpha,n\gamma), {}^{64}\text{Zn}(\alpha,np\gamma).$
1456.08	1+	919.38 24 1165.83 21 1221.88 7 1347.35 25 1412.54 17 1456 6 6	32 <i>13</i> 51 <i>13</i> 100 6 15 5 83 6 19 6	536.618 290.908 234.043 108.893 43.812 0.0	1^{+} (0,1) ⁺ 2^{+} 1^{+} 1^{+} 0^{+}				E_{γ} : poor fit to level energy difference.
1464.33	(7)	113.7 2	100	1350.63	(5)	E2		0.432	$\begin{aligned} &\alpha(\mathbf{K}) = 0.379 \ 6; \ \alpha(\mathbf{L}) = 0.0458 \ 8; \ \alpha(\mathbf{M}) = 0.00661 \ 11; \\ &\alpha(\mathbf{N}+) = 0.000291 \ 5 \\ &\alpha(\mathbf{N}) = 0.000291 \ 5 \\ &\mathbf{B}(\mathbf{E}2)(\mathbf{W}.\mathbf{u}.) = 15.6 \ 5 \\ &\mathbf{Mult.:} \ \mathbf{Q} + \mathbf{O} \ from \ \gamma(\theta) \ in \ ^{63}\mathbf{Cu}(\alpha, \mathbf{n}\gamma); \ \mathbf{E2} \ from \ \mathbf{RUL}. \\ &\delta(\mathbf{M}3/\mathbf{E}2) = -0.09 \ 10 \ from \ \gamma(\theta) \ in \ ^{63}\mathbf{Cu}(\alpha, \mathbf{n}\gamma) \\ & ^{64}\mathbf{Zn}(\alpha, \mathbf{n}p\gamma). \end{aligned}$
		600.9 2	67	863.55	(5)	(Q) <i>a</i>	Q.		$\delta(O/Q) = -0.03 \ 10 \ \text{from } \gamma(\theta) \ \text{in } {}^{63}\text{Cu}(\alpha,n\gamma), {}^{64}\text{Zn}(\alpha,np\gamma).$
1513.37	(6)	162.6 2	60	1350.63	(5)	(D(+Q))	+0.0 2	0.017 4	α : average of α (M1+E2) and α (E1+M2). Uncertainty covers all possible values.
		371.5 2 649.7 2	80 100	863.55	(5)	(D) <i>^a</i>			$\delta(Q/D) = -0.02 \ 10 \text{ from } \gamma(\theta) \text{ in } {}^{63}\text{Cu}(\alpha,n\gamma) \text{ and } {}^{64}\text{Zn}(\alpha,n\gamma).$
1556.65	1 ⁺	555.01 ^d 20 1020.3 3 1174.74 17 1265.0 4 1322.54 4 1490.43 19 1512.87 4 1330.6 3	≤ 17 2.1 <i>13</i> 18 <i>3</i> 11.7 <i>21</i> 66 <i>4</i> 17 <i>4</i> 100 <i>13</i> 8 7	1001.39 536.618 381.859 290.908 234.043 66.139 43.812 234.043	$ \begin{array}{c} 1^+\\ 1^+\\ (0,1)^+\\ 2^+\\ (2)^+\\ 1^+\\ 2^+\\ \end{array} $				
1373.7	1.	1507.8 6	100	66.139	$(2)^{+}$				I_{γ} : weak γ with large uncertainty in intensity from ε decay.
1617.66 1769.36	(6) 1 ⁺	754.1 2 1387.4 4 1478.6 4 1660.2 4 1769.5 4	100 15 12 ≈21 50 40 100 40	863.55 381.859 290.908 108.893 0.0	(5) 1^+ $(0,1)^+$ 1^+ 0^+	(D+Q)	-0.34 ^{&} 10		
1774.90	(7)	261.4 2	100	1513.37	(6)	(D+Q)	+0.28 ^{&} 10		
2408.43	(8)	944.1 2	100	1464.33	(7)	(D) ^{<i>u</i>}	0.70 ^{&}		$\delta(Q/D) = -0.02 \ 10 \ \text{from } \gamma(\theta) \ \text{in } {}^{03}\text{Cu}(\alpha,n\gamma), {}^{04}\text{Zn}(\alpha,np\gamma).$
2512.44	(8)	1048.3 2	100	1464.33	(/) (7)	(D+Q)	$+0.72^{\circ}20$		$\delta(O/O) = -0.09.10$ from $\alpha(\theta)$ in ${}^{63}Cu(\alpha, p_{0})$ ${}^{64}Zp(\alpha, p_{0})$
3043.45	(9 ⁺)	390.4 2	92	2652.99	(9 ⁺)	M1+E2	+0.9 1	0.00337 16	$B(M1)(W.u.)=0.00035 \ 4; B(E2)(W.u.)=3.0 \ 4 \\ \alpha=0.00337 \ 16; \ \alpha(K)=0.00301 \ 14; \ \alpha(L)=0.000313 \ 15; \\ \alpha(M)=4.57\times10^{-5} \ 22; \ \alpha(N+)=2.40\times10^{-6} \ 11$

 $_{31}^{66}\text{Ga}_{35}$ -13

$\gamma(^{66}\text{Ga})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	$I_{\gamma}^{\#}$	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	δ	Comments
							$\alpha(N) = 2.40 \times 10^{-6} 11$
							Mult.: D+Q from $\gamma(\theta)$ ⁶³ Cu($\alpha,n\gamma$); M1+E2 from RUL.
							$\delta(Q/D) = -0.02 \ 10 \ \text{from } \gamma(\theta) \ \text{in} \ {}^{63}\text{Cu}(\alpha,n\gamma), \ {}^{64}\text{Zn}(\alpha,np\gamma).$
							δ : from γ(θ) in ⁶³ Cu(α,nγ), ⁶⁴ Zn(α,pnγ).
3043.45	(9 ⁺)	531.2 2	28	2512.44 (8)	(D) ^{<i>a</i>}		$\delta(Q/D) = -0.02 \ 10 \ \text{from } \gamma(\theta) \ \text{in } {}^{63}\text{Cu}(\alpha,n\gamma), {}^{64}\text{Zn}(\alpha,np\gamma).$
		1268.4 2	100	1774.90 (7)			
		1579.1 2	40	1464.33 (7)	$(Q)^{a}$		$\delta(O/Q) = +0.03 \ 10 \ \text{from } \gamma(\theta) \ \text{in } {}^{63}\text{Cu}(\alpha,n\gamma), {}^{64}\text{Zn}(\alpha,np\gamma).$
3362.3		709.3 2	100	2652.99 (9+)			
3420.1	(10)	376.6 2	100	3043.45 (9 ⁺)	(D) ^{<i>a</i>}		$\delta(Q/D) = -0.02 \ 10 \ \text{from } \gamma(\theta) \ \text{in } {}^{63}\text{Cu}(\alpha,n\gamma), {}^{64}\text{Zn}(\alpha,np\gamma).$
4110.4	(10)	1066.9 2	100	3043.45 (9 ⁺)	(D) ^{<i>a</i>}		$\delta(Q/D) = -0.02 \ I0 \ \text{from } \gamma(\theta) \ \text{in } {}^{63}\text{Cu}(\alpha,n\gamma), {}^{64}\text{Zn}(\alpha,np\gamma).$
4162.1	(11)	1118.6 2	100	3043.45 (9+)	(Q+O) ^{<i>a</i>}	+0.16 20	$\delta(O/Q) = +0.16 \ 20 \ \text{from } \gamma(\theta) \ \text{in } {}^{63}\text{Cu}(\alpha,n\gamma), {}^{64}\text{Zn}(\alpha,np\gamma).$
4192.7		1539.7 2	100	2652.99 (9 ⁺)			
4271.7	(12)	851.6 2	100	3420.1 (10)	(Q) <i>a</i>		$\delta(O/Q) = +0.05 \ 10 \ \text{from } \gamma(\theta) \ \text{in } {}^{63}\text{Cu}(\alpha,n\gamma), {}^{64}\text{Zn}(\alpha,np\gamma).$
4302.7		1649.7 2	100	2652.99 (9 ⁺)			
5109.2	(13)	947.1 2	100	4162.1 (11)	(Q)		Mult.: from $\gamma(\theta)$ in ⁶³ Cu(α ,n γ) and ⁶⁴ Zn(α ,np γ) and ΔJ^{π} .

14

- [†] Additional information 2. [‡] Mainly from ⁶⁶Ge ε decay and ⁶⁶Zn(p,n γ); also from ⁶³Cu(α ,n γ), ⁶⁴Zn(α ,np γ). [#] Relative branching is given; mainly from ⁶⁶Ge ε decay and ⁶⁶Zn(p,n γ), also from ⁶³Cu(α ,n γ), ⁶⁴Zn(α ,np γ).

^(e) From $\gamma(\theta)$ in ⁶⁶Zn(p,n γ). ^(e) From $\gamma(\theta)$ in ⁶³Cu(α ,n γ), ⁶⁴Zn(α ,n γ). ^{*a*} From $\gamma(\theta)$ in ⁶³Cu(α ,n γ), ⁶⁴Zn(α ,n γ) and ΔJ^{π} .

^b From internal-conversion coefficients in ⁶⁶Ge ε decay.

^{*c*} From α (K)exp in (p,n γ).

^d Placement of transition in the level scheme is uncertain.

Level Scheme

Intensities: Relative photon branching from each level

66 31 Ga₃₅

66 31 Ga₃₅

66 31 Ga₃₅

Level Scheme (continued)

Intensities: Relative photon branching from each level

66 31 Ga₃₅

From ENSDF

Adopted Levels, Gammas

 ${}^{66}_{31}\text{Ga}_{35}$ -19

 ${}^{66}_{31}\text{Ga}_{35}$ -19

Level Scheme (continued)

Intensities: Relative photon branching from each level

66 31 Ga₃₅