$^{66}Zn(p,d)$ 1976VaYX,1966Mc15 | History | | | | | | | | | |-----------------|----------|-------------------|------------------------|--|--|--|--|--| | Type | Author | Citation | Literature Cutoff Date | | | | | | | Full Evaluation | Jun Chen | NDS 202.59 (2025) | 25-Feb-2025 | | | | | | Target $J^{\pi}(^{66}\text{Zn g.s.})=0^{+}$. 1976VaYX: E=35 MeV proton beam was produced from the MSU cyclotron. Target was isotopically enriched 66 Zn. Reaction products were momentum-analyzed with an Enge split-pole spectrograph (FWHM=4-7 keV) for energy spectra and with a delay-line proportional counter system (FWHM=13-15) for $\sigma(\theta)$. Measured $\sigma(E(d),\theta)$, $\theta_{cm}=3^{\circ}-60^{\circ}$. Deduced levels. 1966Mc15: E=17.5 MeV proton beam was produced from the Princeton cyclotron. Target was about 1 mg/cm² isotopically enriched 64 Zn foil. Reaction products were detected with silicon surface barrier detectors (FWHM \approx 70 keV). Measured σ (E_d, θ), θ cm \approx 15 $^{\circ}$ -140 \propto Deduced levels, J, π , L-transfers, spectroscopic factors from DWBA analysis. ## 65Zn Levels | E(level) [†] | <u>L</u> ‡ | C^2S^{\ddagger} | Comments | |--|------------|-------------------|--| | 0 | 3 | 1.79 | C^2S : for $J^{\pi} = 5/2^-$.
C^2S : $J^{\pi} = 1/2^-$. | | 54 | 1 | 0.16 | $C^2S: J^{\pi}=1/2^-$. | | 115
207 | 1
(1) | 0.96
0.09 | $C^2S: J^{\pi} = 3/2^$ | | 769 | (1) | 0.07 | | | 867 | 1 | 0.26 | $C^2S: J^{\pi} = 1/2^$ | | 910
1047 [#] | | | | | 1047"
1066 [#] | | | | | 1253 [@] | | | | | 1263 [@] | | | | | 1344 | | | | | 1370
1470 | | | | | 1588 | | | E(level): a possible doublet reported at 1590 30 (1966Mc15). | | 1908 | | | | | 1942 ^{&}
1956 ^{&} | | | | | 1956&
1976& | | | | | 2053 | | | | | 2080 | | | | | 2137
2202 ^a | | | | | 2216 ^a | | | | | 2248 ^a | | | | | 2310
2342 | | | | | 2410 | | | | | 2419
2430 | | | | | 2458 | | | | | 2486 | | | | | 2491
2522 | | | | | 2528 | | | | | 2730
2740 | | | | | 2803 | | | | | 2830 | | | | | 2860 | | | | ## 66Zn(p,d) 1976VaYX,1966Mc15 (continued) ## ⁶⁵Zn Levels (continued) | E(level) [†] | E(level) [†] | E(level) [†] | E(level) | |-----------------------|-----------------------|-----------------------|----------| | 2870 ^b | 3108 | 3730 | 4740 | | 2902 ^b | 3150 | 3776 | 4780 | | 2914 ^b | 3211 | 3810 | 4970 | | 2953 | 3221 | 3844 | 4980 | | 2971 | 3239 | 3880 | 4990 | | 2994 | 3340 | 3889 | 5100 | | 3010 | 3350 | 3902 | 5120 | | 3023 | 3465 | 4086 | | | 3053 | 3550 | 4200 | | | 3095 | 3563 | 4350 | | | | | | | [†] From 1976VaYX, unless otherwise noted. Uncertainty is not reported in 1976VaYX but could be estimated to around 5 keV from the resolution in the spectrum. [‡] From DWBA analysis of $\sigma(\theta)$ (1966Mc15). C²S is obtained from $d\sigma/d\Omega(exp)=N\times C^2S\times d\sigma/d\Omega(DWBA)$, where N is the normalization factor. Original values in 1966Mc15 are obtained by the authors using N=1.0, and the quoted values in this dataset are from the renormalization by the evaluator of those original values, using the recommended normalization factor N=2.29 for (p,d) in 1977En02. Average values for the two spin possibilities are given, except as noted. [#] L=(3,4) reported for a level doublet at 1070 30 (1966Mc15). $^{^{\}text{@}}$ L=(3), C²S=0.31, reported for a level doublet at 1260 30 (1966Mc15). [&]amp; L=(1), $C^2S=0.04$, reported for a level at 1960 30 (1966Mc15). $^{^{}a}$ L=(1), C²S=0.04, reported for a level at 2220 30 (1966Mc15). $^{^{}b}$ C²S=0.52, calculated for J^{π} =7/2 $^{-}$ for a level at 2900 30 (1966Mc15).