⁶⁴Ni(\mathbf{n},γ), (pol \mathbf{n},γ) E=thermal 1977Is01

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 111, 2425 (2010)	1-Aug-2009

1977Is01: measured E γ , I γ ; pair-spectrometer, Ge(Li). 1972Co31: measured E γ , I γ , $\gamma\gamma$ coincidences, T_{1/2}; Ge(Li)'s. 1978Ve06: (pol n, γ); measured γ -circular polarization; Ge(Li)'s. 1971Ar39: measured E γ , I γ ; pair-spectrometer; Ge(Li). Other: 2008He01.

⁶⁵Ni Levels

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	Comments
0	5/2-		
63.15 19	$1/2^{-}$	>2.0 µs	J=1/2 (1978Ve06).
			$T_{1/2}$: from delayed $\gamma\gamma$ coincidences (1972Co31).
310.15 18	3/2-		J=3/2 (1978Ve06).
692.18 10	3/2-		J=3/2 (1978Ve06).
1417.7 <i>3</i>	$1/2^{-}$		J=1/2 (1978Ve06).
1920.0 7	5/2+		
2146.71 19	3/2-		J = (1/2, 3/2) (1978 Ve06).
2324.4 3			
2711.4 3	3/2+		
3009.5 6	3/2+		
3278.5 5	$3/2^+, 5/2^+$		
3962.2 10	$(3/2^+, 5/2^+)$		
(6098.22 20)	$1/2^{+}$		E(level): neutron separation energy from 1985Wa02.

[†] From least-squares fit to $E\gamma$ data. (The evaluators have used an uncertainty of 1 keV where $E\gamma$ uncertainties are not available).

[‡] From Adopted Levels; supporting arguments from this data set are given in comments.

E ₂ †	L,‡@	E _i (level)	\mathbf{J}^{π}	Е£	J^{π}_{c}	Mult.	Comments
63.6	12	63.15	$\frac{1}{1/2^{-}}$	0	5/2-	(E2)	Mult.: from $\alpha \approx 5$ deduced from γ -ray intensity
247.1	0.5	310.15	3/2-	63.15	$1/2^{-}$		modance, see adopted gammas.
310.2 [#] 10 382.0	22 0.7	310.15 692.18	$3/2^{-}$ $3/2^{-}$	0 310.15	5/2 ⁻ 3/2 ⁻		
629.0 [#] 10	7.0	692.18	$3/2^{-}$	63.15	$1/2^{-}$		
692.6 [#] 10	1.4	692.18	3/2-	0	5/2-		
726 <mark>&</mark>	0.2	1417.7	$1/2^{-}$	692.18	3/2-		
1107.4	3.6	1417.7	$1/2^{-}$	310.15	3/2-		
^x 1346.0 [#] 10	2.4						I_{γ} : from 1971Ar39.
1418 <mark>&</mark>	0.2	1417.7	$1/2^{-}$	0	5/2-		
2083.8	0.6	2146.71	$3/2^{-}$	63.15	$1/2^{-}$		
2146.7 5	0.62 8	2146.71	$3/2^{-}$	0	5/2-		I_{γ} : 0.3 (1972Co31).
2401.5 6	0.58 9	2711.4	$3/2^{+}$	310.15	3/2-		
2647.9 8	0.22 4	2711.4	$3/2^{+}$	63.15	1/2-		
^x 2810.4 <i>13</i>	0.07 2						
2819.7 5	0.19 3	(6098.22)	$1/2^{+}$	3278.5	$3/2^+, 5/2^+$		
3088.6 6	0.26 4	(6098.22)	$1/2^{+}$	3009.5	3/2+		
^x 3099.8 <i>13</i>	0.07 3						

 γ (⁶⁵Ni)

⁶⁴Ni(\mathbf{n},γ), (pol \mathbf{n},γ) E=thermal 1977Is01 (continued)

γ (⁶⁵Ni) (continued)

E_{γ}^{\dagger}	I_{γ} ^{‡@}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
^x 3219.3 18	0.11 4					
3386.7 3	0.83 7	(6098.22)	$1/2^{+}$	2711.4	$3/2^{+}$	
3651.0 13	0.08 2	3962.2	$(3/2^+, 5/2^+)$	310.15	$3/2^{-}$	
3773.7 <i>3</i>	0.32 3	(6098.22)	1/2+	2324.4	,	
^x 3852.8 10	0.10 2	. ,				
3951.4 2	1.13 7	(6098.22)	$1/2^{+}$	2146.71	$3/2^{-}$	Circular polarization R=-1.1 10 (1978Ve06).
3963.1 <i>13</i>	0.08 2	3962.2	$(3/2^+, 5/2^+)$	0	$5/2^{-}$	•
4178.1 7	0.12 2	(6098.22)	$1/2^{+}$	1920.0	$5/2^{+}$	
4680.3 <i>3</i>	3.81 21	(6098.22)	$1/2^{+}$	1417.7	$1/2^{-}$	Circular polarization R=1.4 4 (1978Ve06).
^x 4730.2 19	0.06 2				·	•
5405.8 1	8.9 5	(6098.22)	$1/2^{+}$	692.18	$3/2^{-}$	Circular polarization R=-0.53 19 (1978Ve06).
^x 5419.9 <i>17</i>	0.14 5					•
x5752.7 23	0.08 3					
5787.8 2	17.7 9	(6098.22)	$1/2^{+}$	310.15	$3/2^{-}$	Circular polarization R=-0.64 11 (1978Ve06).
6034.8 2	67 4	(6098.22)	1/2+	63.15	1/2-	Circular polarization R=1.00 5 (value used in calibration, 1978Ve06).

[†] Values with uncertainties are from 1977Is01, except as noted. The evaluators have quadratically enhanced the uncertainties of 1977Is01 by 0.2 keV to allow for possible systematic errors. Values without uncertainties are from 1972Co31.

[‡] Photons per 100 captures from 1977Is01, except for values without uncertainties which are from 1972Co31 renormalized to I γ (6035) from 1977Is01.

From 1971Ar39.
^(a) Intensity per 100 neutron captures.

& Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

 $^{65}_{28}\rm{Ni}_{37}$