65 Co β^- decay (1.16 s) 2009Pa16

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 202,59 (2025)	25-Feb-2025

Parent: ⁶⁵Co: E=0; $J^{\pi} = (7/2)^{-}$; $T_{1/2} = 1.16$ s 3; $Q(\beta^{-}) = 5940.6\ 21$; $\%\beta^{-}$ decay=100

 65 Co-J^{π},T_{1/2}: From Adopted Levels.

⁶⁵Co-Q(β^{-}): From 2021Wa16.

Adapted from the XUNDL dataset for 2009Pa16 compiled by B. Karamy and B. Singh (McMaster) on May 12, 2009.

2009Pa16: ⁶⁵Co source was produced by ²³⁸U(p,F) with 30 MeV protons from the LISOL facility of the Cyclotron Research Center (CRC) at Louvain-La-Neuve (Belgium) on a 10 mg/cm² ²³⁸U target inside a gas catcher for stopping and thermalizing the recoiling fission products. Ions leaving the gas are transported through a SextuPole Ion Guide (SPIG), accelerated, mass separated, and implanted into a detection tape surrounded by three thin plastic ΔE detectors for detecting β particles and two MINIBALL clusters for detecting γ rays. Measured $E\gamma$, $I\gamma$, $\beta\gamma\gamma$ -coin, $\gamma(t)$. Deduced levels, J, π , parent T_{1/2}, β -decay branching ratios, log *ft*.

- 1988Bo06: ⁶⁵Co source was produced via ^{nat}W(⁷⁶Ge,X) reaction with E=11.5 MeV/nucleon ⁷⁶Ge primary beam from the UNILAC accelerator on a 36 mg/cm² natural tungsten target. Reaction products were mass separated by the GSI online mass separator and collected at individual tape-transport stations. β particles were detected with a 4π lucite detector and γ rays were detected with two Ge detectors. Measured E γ , I γ , $\beta\gamma$ -coin, $\beta\gamma\gamma$ -coin. Deduced levels, J, π , parent T_{1/2}, β -decay branching ratios, log *ft*.
- 1985Ru05: ⁶⁵Co source was produced via W(⁸²Se,X) with E=11.5 MeV/nucleon ⁸²Se beam from the UNILAC accelerator on a 46 mg/cm² natural tungsten target at GSI. Fragments were separated with the GSI on-line mass separator and transported to a measuring position inside a 4π plastic β -detector between two opposite Ge detectors. Measured E γ , I γ , $\beta\gamma$ -coin, $\gamma\gamma$ -coin. Deduced parent T_{1/2}. Report two transitions and no decay scheme.
- The decay scheme is considered incomplete by the evaluator due to possible missing levels in a large energy gap of about 4.7 MeV between the highest observed level at E=1274 keV and Q-value=5940.6 keV 21, mainly because of possible unobserved γ transitions from those levels.

65Ni Levels

E(level) ^{†‡}	$J^{\pi \#}$	T _{1/2} #	Comments
0.0	5/2-	2.5175 h 5	
63.18 <i>23</i>	1/2-	68.6 μs 35	The reported β feeding of %I β <1.5 (2009Pa16) and \approx 0 (1988Bo06), and a small negative value of -0.8 from γ +ce intensity imbalance support the non-existence of a β decay branch to this level.
310.39 10	$3/2^{-}$		
694.19 <i>32</i>	3/2-		
1141.1 2	$(5/2^-, 7/2^-)$		
1273.74 18	(5/2 ⁻)		
[†] Addition	al information	1.	

[‡] From a least-squares fit to γ -ray energies.

[#] From Adopted Levels.

 β^- radiations

av E β : Additional information 3.

E(decay)	E(level)	Iβ ^{-†‡}	Log ft	Comments
(4666.9 23)	1273.74	4.4	5.3	av $E\beta$ =2084.5 10 I β ⁻ : 5.1 9 (2009Pa16), 5 (1988Bo06).
(4799.5 24)	1141.1	2.89	5.5	av $E\beta=2148.7 \ 10$ $I\beta^-: 3.2 \ 4 \ (2009Pa16), 3.2 \ (1988Bo06).$

Continued on next page (footnotes at end of table)

⁶⁵Co $β^-$ decay (1.16 s) 2009Pa16 (continued)

β^- radiations (continued)

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft	Comments
(5246.4 24)	694.19	0.17	8.8	av $E\beta = 2365.6 \ 10$ $I\beta^-: 0.2 \ (1988Bo06).$
(5630.2 [#] 23)	310.39	< 0.3	>8.7	av $E\beta$ =2551 <i>I</i> I β ⁻ : <0.6 (2009Pa16), <0.1 (1988Bo06).
(5940.6 25)	0.0	91.7 8	4.45 2	av E β =2702.3 10 I β ⁻ : deduced by 2009Pa16 by comparing the off-resonant subtracted β activity with the total γ activity. Note that due to possible unobserved missing

transitions from possible missing levels in this incomplete decay scheme, this value is considered as an upper limit. Others: 91 (1988Bo06), >97 (1985Ru05). Additional information 2. Log *ft*: even though this value is considered as an lower limit due to I β as an

Log *ft*: even though this value is considered as an lower limit due to $I\beta$ as an upper limit, this decay branch is considered as allowed because of the strong feeding.

[‡] Absolute intensity per 100 decays.

[#] Existence of this branch is questionable.

[†] From γ +ce intensity balance at each level for excited levels. All β feedings should be considered as upper limits and thus associated log *ft* values as lower limits, due to possible missing γ rays in this incomplete decay scheme. Original values from 2009Pa16 deduced in the same way by the authors are given under comments.

 γ (⁶⁵Ni)

Iγ normalization: 0.029 4 from $\Sigma[\%I(\gamma+\text{ce to g.s.})]=100-\%I\beta(\text{g.s.})=8.3$ 8. Due to possible missing unobserved transitions to g.s. in this incomplete decay scheme, this value should be considered as an upper limit. 2009Pa16 give 0.027 7. The following transitions assigned to ⁶⁵ Ni by 1988Bo06 have been confirmed by later studies to belong to ⁶⁵ Co: 340.0 3, 882.6 5.										
Eγ‡	Ι _γ #&	E _i (level)	\mathbf{J}_i^{π}	E_f	J_f^{π}	Mult. [@]	δ	α^{\dagger}	$I_{(\gamma+ce)}$ #&	Comments
63.4 4	17 4	63.18	1/2-	0.0	5/2-	(E2)		3.23 9	71 18	%Iγ=0.49 ce(K)/(γ+ce)=0.665 9; ce(L)/(γ+ce)=0.0861 30; ce(M)/(γ+ce)=0.0119 4 ce(N)/(γ+ce)=0.000346 12 α (K)=2.82 8; α (L)=0.365 11; α (M)=0.0502 15 α (N)=0.00147 4 E _γ : other: 63.5 8 (1988Bo06). I _γ : deduced by the evaluator from I(γ+ce) and α . Other: >5 (1988Bo06). I _(γ+ce) : from 2009Pa16. Additional information 4.
310.4 <i>I</i>	74 5	310.39	3/2-	0.0	5/2-	(M1+E2)	+0.191 13	0.0054 28		%Iγ=2.1 α (K)=0.0049 25; α (L)=4.9×10 ⁻⁴ 26; α (M)=7 α (N)=2.8×10 ⁻⁶ 14 E _γ : others: 310.6 3 (1988Bo06), 310.8 4 (1985Ru05). I _γ : weighted average of 86 11 (2009Pa16) and 72 4 (1988Bo06). Additional information 5. E _γ : from 1985Ru05 only.
383.8 ^{<i>a</i>} 3	5.8 22	694.19	3/2-	310.39	3/2-	[M1,E2]		0.0028 12		% Iγ=0.17 α (K)=0.0025 11; α (L)=2.5×10 ⁻⁴ 11; α (M)=3.5×10 ⁻⁵ 15 α (N)=1.5×10 ⁻⁶ 6 E _γ ,I _γ : from 1988Bo06 only. It could be questionable that this γ is seen in ⁶⁵ Co β ⁻ decay, because the much stronger 629γ and 693γ seen also from this level in other studies are not seen here.
963.4 2	69 8	1273.74	(5/2 ⁻)	310.39	3/2-					%Iγ=2.0 E_{γ} : other: 963.7 8 (1988Bo06). I_{γ} : weighted average of 84 <i>13</i> (2009Pa16) and 65 7. Additional information 7.
1141.1 2	100	1141.1	$(5/2^-, 7/2^-)$	0.0	5/2-					%Iγ=2.9

$^{65}_{28}\mathrm{Ni}_{37}$ -4

65 Co β^- decay (1.16 s) 2009Pa16 (continued)

$\gamma(^{65}\text{Ni})$ (continued)

E_{γ}^{\ddagger}	Ι _γ #&	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Comments
1210.6 2	42 6	1273.74	(5/2-)	63.18	1/2-	E _{γ} : other: 1141.7 8 (1988Bo06). I _{γ} : from 2009Pa16. Other: 100 7 (1988Bo06). Additional information 6. %I γ =1.2 E _{γ} : other: 1210.9 8 (1988Bo06). I _{γ} : weighted average of 45 <i>12</i> (2009Pa16) and 41 <i>6</i> (1988Bo06). Additional information 8. %I $_{\gamma}$: using the set of
12/3.3 4	42 3	12/3./4	(5/2)	0.0	5/2	$\%_{1}\gamma=1.2$ E_{γ} : weighted average of 1273.2 <i>3</i> (2009Pa16) and 1274.4 <i>9</i> (1988Bo06). I_{γ} : weighted average of 48 <i>10</i> (2009Pa16) and 40 <i>5</i> (1988Bo06). Additional information 9.

[†] Additional information 10.
[‡] From 2009Pa16, unless otherwise noted.
[#] Values quoted from 2009Pa16 are from weighted average of values from decay of ⁶⁵Co directly from the production (data set II) and decay of ⁶⁵Co from ⁶⁵Fe decay (data set I; reported relative to $I\gamma=100$ for 882.5 γ in ⁶⁵Co and re-normalized by the evaluator to $I\gamma=100$ for 1141.1 γ). Values quoted from 1988Bo06 are renormalization of original values reported relative to $I_{\gamma}=100$ for 310.6 γ .

[@] From Adopted Gammas. 4

[&] For absolute intensity per 100 decays, multiply by 0.0289 34.

^{*a*} Placement of transition in the level scheme is uncertain.

 $x \gamma$ ray not placed in level scheme.

65 Co β^- decay (1.16 s) 2009Pa16

 $^{65}_{28}{
m Ni}_{37}$