Adopted Levels, Gammas

History								
Type Author		Citation	Literature Cutoff Date					
Full Evaluation	Jun Chen	NDS 202,59 (2025)	25-Feb-2025					

 $Q(\beta^{-})=10251\ 6$; $S(n)=6050\ 5$; $S(p)=1.462\times10^{4}\ 30$; $Q(\alpha)=-1.322\times10^{4}\ 23$ 2021Wa16

S(2n)=10223 5, S(2p)=33810 340, $Q(\beta^{-}n)=5931 6$ (2021Wa16).

Mass measurements: 2012Na15 (M.E.=-40967.3 37), 2011Es06 (M.E.=-40790 31), 1994Se12 (M.E.=-40900 600).

- 2012Na15: ⁶⁵Mn was produced via U(p,X) with 1.4 GeV proton beam from CERN's Proton Synchroron Booster (PSB) on a UC_x target. Fragments were separated and transported through the General Purpose Separator (GPS) and sent to the ISOLTRAP. Measured radio frequency. Deduced mass excess.
- 2011Es06: ⁶⁵Mn was produced by fragmentation of a 100 MeV/nucleon ⁸⁶Kr beam on a Be target at NSCL. Fragments were separated by the A1900 separator and analyzed with the S800 magnetic spectrograph. Measured time-of-flight. Deduced mass excess using the TOF-B ρ method.
- 1994Se12: ⁶⁵Mn was produced va ^{nat}Th(p,X) with 800 MeV proton beam from the Los Alamos Meson Physics Facility (LAMPF). Measured time-of-flight with the TOFI spectrometer. Deduced mass excess.
- 2011Da08: ⁶⁵Mn was produced in the fragmentation of 57.8 MeV/nucleon ⁸⁶Kr beam impinged on 50 mg/cm² thick tantalum target at GANIL. Fragments were identified and selected using the LISE-2000 spectrometer with a three-element Si-detector telescope, and implanted into a double-sided silicon-strip detector (DSSSD) backed by a Si(Li) detector and surrounded by four clover type EXOGAM Ge detectors. Measured implant- β time correlation. Deduced ⁶⁵Mn decay half-life. See also 2002MaZN thesis.
- 2003So21: ⁶⁵Mn was produced by fragmentation of a 61.8 MeV/nucleon ⁷⁶Ge beam on a ⁵⁸Ni target at GANIL. Fragments were identified and seperated by the LISE3 spectrometer with 3 consecutive silicon detectors, and implanted into the last Si detector surrounded by 4 Ge detectors for γ detection. Measured E β , $\beta\gamma$ -coin, implant- β (t). Deduced ⁶⁵Mn decay T_{1/2}. See also 1999So20, 1999Le67, 2005Ga01 of the same group and 2005GaZR thesis.
- 2013Ol06: mass separated ⁶⁵Mn was produced at ISOLDE in CERN. Measured β particles with a plastic scintillator and γ rays with two LaBr₃(Ge) detectors. Measured E β , I β , E γ , I γ , $\beta\gamma$ (t). Deduced β -delayed neutron emission probability for ⁶⁵Mn decay, ⁶⁵Mn T_{1/2}.
- 1999Ha05: ⁶⁵Mn was produced via UC₂(p,X) with 1 GeV proton from the ISOLDE facility at CERN. Measured E γ , E(n), E β , β n(t). Deduced ⁶⁵Mn T_{1/2}.
- 1998Am04: ⁶⁵Mn was produced via fragmentation of a 500 MeV/nucleon ⁸⁶Kr beam on a Be target at GSI. Measured implant- β time correlation. Deduced ⁶⁵Mn T_{1/2}.
- 1985Gu14: ⁶⁵Mn produced by fragmentation of 33-MeV/u ⁸⁶Kr beam incident on thick Ti and Ta targets and identified through time-of-flight and Δ E-E measurements with a resolution of Δ Z/Z<1.5% and Δ A/A<1%.

Additional information 1.

Theoretical calculations:

1995Ri05: calculated binding energy, mass defect.

⁶⁵Mn Levels

Cross Reference (XREF) Flags

- A 65 Cr β^- decay
- **B** 1 H(68 Fe,2p2n γ)

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2}	XREF	Comments	
0	(5/2-)	91.9 ms 9	AB	 %β⁻=100; %β⁻n=7.9 12 (2013Ol06) J^π: suggested from systematics of neighboring neutron-rich odd-A Mn isotopes (down to ⁵⁵Mn), which all have a firm J^π=5/2⁻; 5/2⁻ is also from shell-model calculations in 2018Li46 in ¹H(⁶⁸Fe,2p2nγ). Other: 3/2⁻ from theoretical prediction in 2019Mo01. Additional information 2. T_{1/2}: from β-delayed 363.7γ(t) in the decay of ⁶⁵Mn in 2013Ol06, where a value of 92.0 ms 13 is also reported using five other γ transitions 455.6γ, 569.1γ, 683.3γ, 	

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁶⁵Mn Levels (continued)

E(level) [†]	$J^{\pi \ddagger}$	XREF	Comments			
			725.2 γ and 1002.9 γ . Others: 84 ms 8 (2011Da08, implant- β (t)), 92 ms 1 (2003So21, implant- β (t); 100 ms 8 from their earlier measurements in 1999So20 and 1999Le67), 88 ms 4 (1999Ha05, β -n(t)), 110 ms 20 (1998Am04, implant- β (t)); 85 ms +10-9 (2005NiZZ, preliminary). % β -n: deduced by 2013Ol06 from their measured intensities of γ transitions in the decay of ⁶⁴ Fe, which is fed by β -delayed neutron emission of ⁶⁵ Mn.			
273 [#] 5	$(7/2^{-})$	В				
783 [#] 8	(9/2-)	В				
1177 [#] 10	$(11/2^{-})$	В				

[†] From $E\gamma$ data.

⁴ As proposed in 2018Li46 based on shell-model predictions and an assumption of a $\Delta J=1$ dipole transition deexciting each excited level, unless otherwise noted. [#] Seq.(A): Cascade based on the (5/2⁻) ground state.

 $\gamma(^{65}Mn)$

E _i (level)	\mathbf{J}_i^{π}	E_{γ}^{\dagger}	I_{γ}	\mathbf{E}_{f}	\mathbf{J}_f^{π}
273	$(7/2^{-})$	273 5	100	0	$(5/2^{-})$
783	$(9/2^{-})$	510 6	100	273	$(7/2^{-})$
1177	$(11/2^{-})$	394 6	100	783	$(9/2^{-})$

[†] From ${}^{1}\text{H}({}^{68}\text{Fe},2p2n\gamma)$ (2018Li46).

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{65}_{25}Mn_{40}$

Adopted Levels, Gammas

