### $^{1}$ H( $^{68}$ Fe,2p2n $\gamma$ ) **2018Li46**

Type Author Citation Literature Cutoff Date
Full Evaluation Jun Chen NDS 202,59 (2025) 25-Feb-2025

Adapted from the XUNDL dataset of 2018Li46, compiled by Y. Ichikawa (RIKEN) and F.G. Kondev (ANL) on November 6, 2018. 2018Li46: E≈260 MeV/nucleon <sup>68</sup>Fe beam was produced by fragmentation of a 345 MeV/nucleon primary <sup>238</sup>U beam on a <sup>9</sup>Be target at the RIKEN-RIBF facility. The secondary target was 102(1)-mm-thick liquid hydrogen (LH<sub>2</sub>). Reaction residues were identified and selected with the BigRIPS before the target and the ZeroDegree spectrometer after target by the Bρ-ΔE-TOF method. Charged particles were detected with the Time-Projection Chamber (TPC) of the MINOS device; γ rays were detected by the DALI2 spectrometer. Measured Eγ, Iγ, γγ-coin. Deduced levels, J, π. Comparisons with large-scale shell-model calculations.

#### 65Mn Levels

| E(level) <sup>†</sup>   | $J^{\pi \ddagger}$ |
|-------------------------|--------------------|
| 0                       | (5/2-)             |
| 273 <sup>#</sup> 5      | $(7/2^{-})$        |
| 783 <sup>#</sup> 8      | $(9/2^{-})$        |
| 1177 <b>#</b> <i>10</i> | $(11/2^{-})$       |

<sup>†</sup> From Ey data.

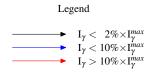
 $\gamma$ (65Mn)

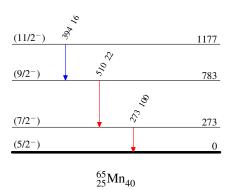
| $E_{\gamma}^{\dagger}$ | $I_{\gamma}^{\dagger}$ | $E_i(level)$ | $\mathbf{J}_i^{\pi}$ | $\mathbf{E}_f$ | $\mathbf{J}_f^{\pi}$ |
|------------------------|------------------------|--------------|----------------------|----------------|----------------------|
| 273 <sup>#</sup> 5     | 100 2                  | 273          | $(7/2^{-})$          | 0              | (5/2-)               |
| 394 <sup>‡#</sup> 6    | 16 <i>1</i>            | 1177         | $(11/2^{-})$         | 783            | $(9/2^{-})$          |
| 510 <sup>‡</sup> 6     | 22 <i>1</i>            | 783          | $(9/2^{-})$          | 273            | $(7/2^{-})$          |

<sup>&</sup>lt;sup>†</sup> From 2018Li46.

<sup>&</sup>lt;sup>‡</sup> As proposed in 2018Li46 based on shell-model predictions and an assumption of a ΔJ=1 dipole transition deexciting each excited level.

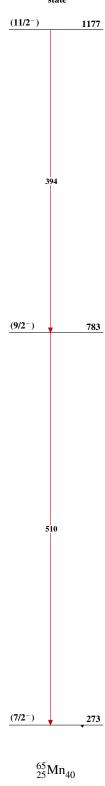
 $<sup>^{\#}</sup>$  Seq.(A): Cascade based on the  $(5/2^{-})$  ground state.


 $<sup>^{\</sup>ddagger}$  Observed in coin spectrum gated by the 273-keV  $\gamma$  ray.


<sup>&</sup>lt;sup>#</sup> Observed in coin spectrum gated by the 510-keV  $\gamma$  ray.

# $\frac{1}{1}$ H(<sup>68</sup>Fe,2p2n $\gamma$ ) 2018Li46

### Level Scheme


Intensities: Relative  $I_{\gamma}$ 





## $^{1}$ H( $^{68}$ Fe,2p2n $\gamma$ ) 2018Li46

Seq.(A): Cascade based on the (5/2<sup>-</sup>) ground state

