⁶⁵Ge ε+β⁺ decay (30.9 s) 1973Jo12,1987Vi01

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 202,59 (2025)	25-Feb-2025

Parent: ⁶⁵Ge: E=0; $J^{\pi} = (3/2)^{-}$; $T_{1/2} = 30.9$ s 7; $Q(\varepsilon + \beta^{+}) = 6179.3$ 23; $\%\varepsilon + \beta^{+}$ decay=100

 ${}^{65}\text{Ge-J}^{\pi},\text{T}_{1/2}$: From Adopted Levels of ${}^{65}\text{Ge}$.

⁶⁵Ge-Q(ε + β ⁺): From 2021Wa16.

1973Jo12: ⁶⁵Ge source was produced via ⁶⁴Zn(³He,n) with 20 MeV ³He beam from the AVF cyclotron of the Vrijie Universiteit. γ rays were detected with a Ge(Li) detector. Measured E γ , I γ , γ (t). Deduced levels, J, π , parent T_{1/2}, decay branching ratios, log *ft*.

1987Vi01: ⁶⁵Ge source was produced via ⁶⁴Zn(³He,2n) with 25 MeV ³He beam from the University of Jyvaskyla MC-20 cyclotron. γ rays were detected with a Ge(Li) detector and β -delayed protons were detected with a Si(Au) surface-barrier detector. Measured E γ , β -delayed proton. Deduced levels, proton branching ratios, log *ft*, B(GT) for levels above S(p). 1987Vi01 also report data for ⁶⁴Zn(p, γ):resonance.

1974Ro16: ⁶⁵Ge source was produced via ⁶⁴Zn(He,2n) with 70 MeV ³He beam from the Michigan State University cyclotron. γ rays were detected with a Ge(Li) detector. Measured E γ , I γ , γ (t). Deduced levels, J, π , parent T_{1/2}, decay branching ratios, log *ft*.

1976Ha29,1981Ha44: ⁶⁵Ge source was produced via ⁴⁰Ca(²⁸Si,2pn) with 90 MeV ²⁸Si beam from the Chalk River upgraded MP tandem. γ rays were detected with a Ge(Li) or a Na(Tl) detector; X rays were were detected with a intrinsic Ge detector; β -delayed protons were detected with a Δ E-E surface-barrier counter telescope. Measured E γ , I γ , β -delayed proton spectra, p-(X ray), p- γ , γ -(X ray) and $\beta^+\gamma$ coincidences, β -p(t). Deduced parent T_{1/2}, proton branching ratio.

1975Ro25: ⁶⁵Ge source was produced via ⁶⁴Zn(³He,2n) at Vrijie Universiteit. γ rays were detected with Ge(Li) and NaI(Tl) detectors; positrons were detected with a plastic scintillator. Measured delayed $\gamma\gamma$ -coin, positron- γ -coin. Deduced T_{1/2}. Others:

A $T_{1/2}=1.5$ min ⁶⁵Ge activity reported in 1958Po79 and associated with γ -rays at 0.67 and 1.72 MeV has been searched for but not observed (1973Jo12,1974Ro16).

The decay scheme is considered complete.

⁶⁵Ga Levels

E(level) ^{†‡}	$\mathbf{J}^{\pi \#}$	$T_{1/2}^{\#}$	Comments
0	3/2-	15.133 min 28	I(ε + β ⁺)=0 <i>14</i> from the normalization used here; it is estimated to be <10% (1973Jo12). Other: <30% from measured growth of ⁶⁵ Ga daughter activity (1974Ro16).
62.0 2 190.8 2 649.7 2 809.2 2 1075.8 2 1662.8 5 1879.4 2 1901.7? 5 2046.3? 3 2161.8? 4 2929.6? 5 3085.3? 4 3197.1? 7 3279 4.2 6	$(1/2)^{-}$ $5/2^{-}$ $1/2^{-},3/2^{-}$ $1/2^{-},3/2^{-}$ $7/2^{(-)}$ $1/2^{-},3/2^{-}$ $(1/2,3/2,5/2)^{-}$ $(1/2^{-},3/2^{-},5/2^{-})$	<1.2 ns 650 ps 24	T _{1/2} : from measurement of delayed $62\gamma \cdot \gamma^{\pm}$ coincidence (1975Ro25).
5065 5 5116 5 5192 10 5239 5 5298 5 5338 5 5354 10	(1/2+)		$\begin{split} E(p)(lab) &= 1105 \ 5. \\ E(p)(lab) &= 1156 \ 5. \\ E(p)(lab) &= 1230 \ 10. \\ E(p)(lab) &= 1277 \ 5. \\ E(p)(lab) &= 1335 \ 5. \\ E(p)(lab) &= 1374 \ 5. \\ E(p)(lab) &= 1390 \ 10. \end{split}$

Continued on next page (footnotes at end of table)

⁶⁵Ge ε+ $β^+$ decay (30.9 s) 1973Jo12,1987Vi01 (continued)

⁶⁵Ga Levels (continued)

E(level) ^{†‡}	Comments								
5384 5	E(p)(lab)=1419 5.								
5393 10	$E(p)(lab) = 1428 \ 10.$								
5436 5	E(p)(lab) = 1471 5.								
5467 5	E(p)(lab)=1501 5.								
5480 <i>5</i>	E(p)(lab)=1514 5.								
5507 <i>5</i>	E(p)(lab)=1541 5.								
5552 <i>5</i>	E(p)(lab)=1585 5.								
5562 10	$E(p)(lab)=1595 \ 10.$								
5596 <i>5</i>	E(p)(lab) = 1628 5.								
5642 5	E(p)(lab) = 1674 5.								
5656 5	E(p)(lab)=1687 5.								
5677 5	E(p)(lab) = 1708 5.								
5708 <i>5</i>	E(p)(lab)=1739 5.								
5757 10	$E(p)(lab)=1787 \ 10.$								
5799 <i>5</i>	E(p)(lab) = 1828 5.								
5844 <i>5</i>	E(p)(lab)=1872 5.								
5868 <i>5</i>	E(p)(lab)=1896 5.								
5899 <i>5</i>	E(p)(lab)=1927 5.								
5920 10	E(p)(lab)=1947 10.								
5927 10	E(p)(lab)=1954 10.								
5993 10	$E(p)(lab)=2019 \ 10.$								

[†] Additional information 1.

[‡] From a least-squares fit to γ -ray energies up to 3279 level and from measured E(p) of β^+ -delayed proton in 1987Vi01 for E(level) \geq 5065, unless otherwise noted. For values from E(p), E(level)=[1+m(p)/m(⁶⁴Zn)]×E(p)+S(p)(⁶⁵Ga), where m(p) and m(⁶⁴Zn) are masses, E(p) the proton energy in lab frame as given under comments, and S(p)=3942.5 7 (2021Wa16). [#] From Adopted Levels.

ε, β^+ radiations

av E β : Additional information 2.

The fraction of β decays populating proton-emitting states in ⁶⁵Ga is measured to be: $1.3 \times 10^{-4} 5$ (1976Ha29), $1.1 \times 10^{-4} 3$ (1987Vi01).

E(decay)	E(level)	Ie‡	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
(186 10)	5993	$1.2 \times 10^{-4} 5$	5.6 +3-2	$1.2 \times 10^{-4} 5$	εK=0.87110 91; εL=0.10896 69; εM+=0.01994 18
(252 10)	5927	$8 \times 10^{-5} 4$	6.0 +4-3	$8 \times 10^{-5} 4$	εK=0.87410 57; εL=0.10648 41; εM+=0.01943 13
(259 10)	5920	2.4×10 ⁻⁴ 10	5.6 +3-2	2.4×10 ⁻⁴ 10	εK=0.87432 55; εL=0.10629 40; εM+=0.01939 12
(280 6)	5899	$1.3 \times 10^{-4} 5$	5.9 +3-2	$1.3 \times 10^{-4} 5$	εK=0.87492 36; εL=0.10580 24; εM+=0.019281 97
(311 6)	5868	4.5×10^{-4} 7	5.5 1	4.5×10^{-4} 7	εK=0.87566 33; εL=0.10519 22; εM+=0.019155 92
(335 6)	5844	4.5×10^{-4} 7	5.5 1	4.5×10^{-4} 7	εK=0.87613 31; εL=0.1048 2; εM+=0.019075 89
(380 6)	5799	6.7×10 ⁻⁴ 10	5.5 1	6.7×10 ⁻⁴ 10	εK=0.87684 29; εL=0.10420 18; εM+=0.018951 85
(422 10)	5757	$1.5 \times 10^{-4} 5$	6.2 2	$1.5 \times 10^{-4} 5$	εK=0.87737 33; εL=0.10377 22; εM+=0.018861 91
(471 6)	5708	$3.0 \times 10^{-4} 5$	6.0 1	$3.0 \times 10^{-4} 5$	εK=0.87787 26; εL=0.10336 16; εM+=0.018776 80
(502 6)	5677	5.2×10^{-4} 7	5.8 1	5.2×10^{-4} 7	εK=0.87813 25; εL=0.10314 15; εM+=0.018731 79
(523 6)	5656	5.7×10^{-4} 7	5.8 1	5.7×10^{-4} 7	εK=0.87828 25; εL=0.10301 15; εM+=0.018705 78
(537 6)	5642	4.5×10^{-4} 7	5.9 1	4.5×10^{-4} 7	εK=0.87838 25; εL=0.10293 15; εM+=0.018687 78
(583 6)	5596	$2.7 \times 10^{-4} 5$	6.2 1	2.7×10^{-4} 5	εK=0.87867 24; εL=0.10269 14; εM+=0.018637 77
(617 10)	5562	$1.0 \times 10^{-4} 5$	6.7 +4-2	$1.0 \times 10^{-4} 5$	εK=0.87886 26; εL=0.10253 16; εM+=0.018605 80

Continued on next page (footnotes at end of table)

⁵⁵ Ge ε + β ⁺ decay (30.9 s)	1973Jo12,1987Vi01 (continued)
--	-------------------------------

E(decay)	E(level)	Ιβ ⁺ †‡	$I\varepsilon^{\ddagger}$	Log <i>ft</i>	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
(627 6)	5552		2.7×10 ⁻⁴ 5	6.3 1	$2.7 \times 10^{-4} 5$	εK=0.87891 24; εL=0.10249 14;
(672 6)	5507		6.6×10 ⁻⁴ 10	6.0 1	6.6×10 ⁻⁴ 10	$\varepsilon M = 0.01859776$ $\varepsilon K = 0.87912 23; \varepsilon L = 0.10232 14;$ $\varepsilon M = 0.018560 75$
(699 6)	5480		2.0×10 ⁻⁴ 5	6.5 2	$2.0 \times 10^{-4} 5$	$\varepsilon K=0.87923 \ 23; \ \varepsilon L=0.10223 \ 13; \ \varepsilon M+=0.018541 \ 75$
(712 6)	5467		$1.2 \times 10^{-4} 5$	6.8 +3-2	1.2×10 ⁻⁴ 5	$\varepsilon K=0.87928 \ 23; \ \varepsilon L=0.10218 \ 13; \ \varepsilon M+=0.018533 \ 75$
(743 6)	5436		2.4×10 ⁻⁴ 5	6.5 1	2.4×10 ⁻⁴ 5	$\varepsilon K=0.87940 \ 23; \ \varepsilon L=0.10209 \ 13; \ \varepsilon M+=0.018513 \ 74$
(786 10)	5393		7×10 ⁻⁵ 3	7.1 +3-2	7×10 ⁻⁵ 3	$\varepsilon K=0.87954 \ 24; \ \varepsilon L=0.10197 \ 14; \ \varepsilon M+=0.018488 \ 76$
(795 6)	5384		6.0×10 ⁻⁴ 10	6.2 1	6.0×10 ⁻⁴ 10	εK =0.87957 22; εL =0.10195 13; εM +=0.018484 74
(825 10)	5354		2.0×10 ⁻⁴ 10	6.7 +3-2	2.0×10 ⁻⁴ 10	εK=0.87966 24; εL=0.10187 14; εM+=0.018469 76
(841 6)	5338		3.4×10 ⁻⁴ 10	6.5 2	3.4×10 ⁻⁴ 10	εK=0.87970 22; εL=0.10184 13; εM+=0.018461 73
(881 6)	5298		5.0×10 ⁻⁴ 10	6.3 1	5.0×10 ⁻⁴ 10	εK=0.87981 22; εL=0.10175 13; εM+=0.018442 73
(940 6)	5239		0.00114 15	6.0 1	1.14×10 ⁻³ 15	εK=0.87995 22; εL=0.10164 13; εM+=0.018419 73
(987 10)	5192		1.7×10 ⁻⁴ 10	6.9 +4-2	1.7×10 ⁻⁴ 10	εK=0.88004 23; εL=0.10155 13; εM+=0.018402 74
(1063 6)	5116		8.4×10 ⁻⁴ 10	6.3 1	8.4×10 ⁻⁴ 10	εK=0.88018 22; εL=0.10144 12; εM+=0.018378 72
(1114 6)	5065		1.3×10 ⁻⁴ 5	7.1 2	1.3×10 ⁻⁴ 5	εK=0.88017 22; εL=0.10136 12; εM+=0.018362 72
(2899.9 26)	3279.4?	1.22 16	0.144 17	4.91 +7-6	1.36 16	av Eβ=824.3 11; εK=0.09335 72; εL=0.010646 83; εM+=0.001926 15
(2982.2 26)	3197.1?	0.64 28	0.067 26	5.3 2	0.71 28	av E β =862.1 11; ε K=0.08289 64; ε L=0.009452 74; ε M+=0.001710 14
(3094.0 26)	3085.3?	1.79 22	0.157 18	4.93 +7-6	1.95 22	av $E\beta$ =913.5 <i>11</i> ; ε K=0.07096 <i>54</i> ; ε L=0.008090 <i>62</i> ; ε M+=0.001464 <i>11</i>
(3249.7 26)	2929.6?	0.51 24	0.036 16	5.6 +3-2	0.55 24	av $E\beta = 985.4 \ 11; \ \varepsilon K = 0.05781 \ 43; \ \varepsilon L = 0.006589 \ 50; \ \varepsilon M + = 0.0011920 \ 94$
(4017.5 26)	2161.8?	2.28 20	0.066 6	5.54 5	2.35 20	av $E\beta = 1344.3$ <i>11</i> ; $\varepsilon K = 0.02463$ <i>17</i> ; $\varepsilon L = 0.002805$ <i>20</i> ; $\varepsilon M + = 5.074 \times 10^{-4}$ <i>38</i>
(4133.0 25)	2046.3?	1.36 22	0.035 6	5.84 9	1.39 22	av E β =1398.8 <i>11</i> ; ε K=0.02207 <i>15</i> ; ε L=0.002513 <i>17</i> ; ε M+=4.546×10 ⁻⁴ <i>34</i>
(4277.6 26)	1901.7?	0.29 19	0.007 4	6.6 +5-3	0.30 19	av E β =1467.1 <i>11</i> ; ε K=0.01934 <i>13</i> ; ε L=0.002202 <i>15</i> ; ε M+=3.982×10 ⁻⁴ <i>29</i>
(4299.9 25)	1879.4	5.4 6	0.118 13	5.34 6	5.5 6	av E β =1477.7 <i>11</i> ; ε K=0.01896 <i>13</i> ; ε L=0.002158 <i>15</i> ; ε M+=3.904×10 ⁻⁴ <i>29</i>
(4516.5 26)	1662.8	0.68 13	0.0123 23	6.4 1	0.69 13	av E β =1580.4 <i>11</i> ; ε K=0.01574 <i>10</i> ; ε L=0.001791 <i>12</i> ; ε M+=3.240×10 ⁻⁴ <i>23</i>
(5103.5 25)	1075.8	0.34 32	0.009 8	$8.6^{1u} + 11 - 3$	0.35 32	av Eβ=1870.4 11; εK=0.02273 15; εL=0.002596 17; εM+=4.698×10 ⁻⁴ 33
(5370.1 25)	809.2	19.6 <i>16</i>	0.187 15	5.34 5	19.8 <i>16</i>	av E β =1988.0 <i>11</i> ; ε K=0.008335 52; ε L=9.482×10 ⁻⁴ 60; ε M+=1.715×10 ⁻⁴ <i>12</i>
(5529.6 25)	649.7	34.4 21	0.295 18	5.17 4	34.7 21	av $E\beta = 2064.6 \ 11$; $\varepsilon K = 0.007507 \ 47$; $\varepsilon L = 8.539 \times 10^{-4} \ 54$; $\varepsilon M + = 1.544 \times 10^{-4} \ 10$
(5988.5 25)	190.8	4.4 8	0.028 5	6.3 1	4.4 8	av E β =2285.4 <i>11</i> ; ε K=0.005667 <i>34</i> ; ε L=6.444×10 ⁻⁴ <i>40</i> ; ε M+=1.1656×10 ⁻⁴

ϵ, β^+ radiations (continued)

Continued on next page (footnotes at end of table)

From ENSDF

			⁶⁵ Ge	$\varepsilon \epsilon + \beta^+ d \epsilon$	ecay (30.9 s)	1973Jo12,1987Vi01 (continued)
					ϵ, β^+ radia	ations (continued)
E(decay)	E(level)	Ιβ ⁺ †‡	$\mathrm{I}\varepsilon^{\ddagger}$	Log ft	$I(\varepsilon + \beta^+)^{\ddagger}$	Comments
(6117.3 25)	62.0	27 4	0.16 3	5.5 1	27 4	79 av E β =2347.5 11; ε K=0.005262 32; ε L=5.984×10 ⁻⁴ 37; ε M+=1.0821×10 ⁻⁴ 73

[†] From γ +ce intensity balance at each level for E(level)<2000, and from measured %I(p) of β ⁺-delayed protons for E(level)=5065 and above, unless otherwise noted. [‡] Absolute intensity per 100 decays.

$\gamma(^{65}\text{Ga})$

I γ normalization: Deduced by the evaluator from I $\gamma(\gamma^{\pm})/I\gamma(650)=6.05$ (1973Jo12), relative $\varepsilon+\beta^+$ feeding from $\gamma+ce$ intensity balance at each level, and theoretical ε/β^+ ratio at each level. Based on this normalization factor of 0.57 9, a total $\varepsilon+\beta^+$ feeding of 108 20 is deduced based on $\gamma+ce$ intensity balance at each level, indicating the completeness of the decay scheme. Other: 0.33 2 from $\Sigma\%I(\gamma+ce$ to g.s.)=100- $\%I\beta$ (g.s.)=100.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E _i (level)	\mathbf{J}_i^π	E_f	J_f^π	Mult. [‡]	δ^{\ddagger}	α [@]	Comments
62.0 2	76 13	62.0	(1/2)-	0	3/2-	[M1]		0.266	$\alpha(K)=0.233; \ \alpha(L)=0.0248$ %I $\gamma=25.1 \ 30$ E $_{\gamma}$: from 1974Ro16. Other: 62.1 5 (1973Jo12). I $_{\gamma}$: weighted average of 81 15 (1973Jo12) and 73 13 (1974Ro16)
190.8 2	30.6 17	190.8	5/2-	0	3/2-	M1+E2	-0.7 3	0.029 10	$\alpha(K) = 0.026 \ 9; \ \alpha(L) = 0.028 \ 10$ %Iy=10.1 8 E _y : other: 190.7 3 (1974Ro16). I _y : weighted average of 31.3 19 (1973Jo12) and 30.0 17 (1974Ro16)
459.1 5	6.0 8	649.7	$1/2^{-}, 3/2^{-}$	190.8	5/2-				$\%$ I γ =1.98 29
587.7 2	7.8 10	649.7	1/2-,3/2-	62.0	$(1/2)^{-}$				$\%$ I γ =2.6 4
									E_{γ} : other: 587.8 <i>3</i> (1974Ro16). I _{γ} : weighted average of 8.0 <i>12</i> (1973Jo12) and 7.6 <i>10</i> (1974Ro16).
618.7 4	4.6 7	809.2	1/2-,3/2-	190.8	5/2-				%Iy=1.52 25
649.7 2	100	649.7	1/2 ⁻ ,3/2 ⁻	0	3/2-				$\%$ I γ =33.1 19 E $_{\gamma}$: other: 649.8 3 with I γ =100 (%I γ =33.0 13) (1974Ro16).
^x 753.0 ^u 3	3.9 6								% $I\gamma$ =1.29 21 E_{γ} : reported in 1974Ro16 as a possible γ ray associated with ⁶⁵ Ge ε decay. Not reported in 1973Jo12. L : from 1974Ro16
809.1 2	65.4	809.2	$1/2^{-}.3/2^{-}$	0	3/2-				γ 1011 1974 (1010) $\%$ [γ =21.5 16
		00712	.,_,_,_	Ũ	0,2				E_{γ} : other: 809.3 <i>3</i> (1974Ro16). I_{γ} : weighted average of 65 <i>4</i> (1973Jo12) and 64 <i>4</i> (1974Ro16).
826.8 ^a 15	1.1 4	1901.7?		1075.8	$7/2^{(-)}$				%Iy=0.36 14
884.9 <i>3</i>	1.0 4	1075.8	$7/2^{(-)}$	190.8	5/2-	(M1+E2)	-0.23 4		$\%$ I γ =0.33 14
970.7 ^a 15	0.7 3	2046.3?		1075.8	$7/2^{(-)}$				%Iy=0.23 10
1070.2 3	3.0 5	1879.4	$(1/2, 3/2, 5/2)^{-}$	809.2	1/2-,3/2-				$\%$ I γ =0.99 18
									E_{γ} : other: 1070.4 <i>3</i> (1974Ro16).
									I_{γ} : weighted average of 2.8 <i>3</i> (1973Jo12) and 3.9 <i>6</i> (1974Ro16).

 \mathbf{v}

	⁶⁵ Ge ε+ $β^+$ decay (30.9 s) 1973Jo12,1987Vi01 (continued)										
	γ ⁽⁶⁵ Ga) (continued)										
${\rm E_{\gamma}}^{\dagger}$	$I_{\gamma}^{\dagger \#}$	E_i (level)	J_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	Comments				
			- (-)		2/2-		I_{γ} : weighted average of 2.8 <i>3</i> (1973Jo12) and 3.9 <i>6</i> (1974Ro16).				
1075.9 3	2.5 3	1075.8	$7/2^{(-)}$	0	3/2-	(E2)	$\%1\gamma = 0.83$ 11				
1150.74 15	0.4 2	3197.1?		2046.3?			$\%1\gamma=0.13$ /				
1183.6 ^{<i>a</i>} 3	1.4 3	3085.3?		1901.7?			$\%1\gamma = 0.46 \ 10$				
1205.7 ^a 4	3.8 4	3085.3?		1879.4	$(1/2,3/2,5/2)^{-}$		$\%1\gamma = 1.26$ 15				
							E_{γ} : other: 1205.6 5 (19/4Ro16).				
1000 0 0	6 7 10	1070 4	(1 12 2 12 5 12) -	< 10 -	1/2- 2/2-		I_{γ} : weighted average of 3.7 4 (19/3Jo12) and 4.2 12 (19/4Ro16).				
1229.8 3	6.7 10	1879.4	$(1/2,3/2,5/2)^{-1}$	649.7	$1/2^{-},3/2^{-}$		$\%1\gamma = 2.2.4$				
1007 10 0	205	2046.20		000.0	1/2- 2/2-		E_{γ}, I_{γ} : from 19/4Ro16. Not reported in 19/3J012.				
1237.14 3	3.9 5	2046.3?		809.2	1/2 ,3/2		$\%_1\gamma_{=1.29}$ 18				
							I his γ has been assigned to the decays of 1299 and 1880 levels in the				
							$^{64}Zn(p,\gamma)$ data of 198/Vi01.				
							E_{γ} : other: 1237.0 5 (19/4Ro16).				
1511.00 10	100	01/1 00	(1/0- 2/0- 5/0-)	(10.7	1/2- 2/2-		I_{γ} : weighted average of 3.8 3 (19/3Jo12) and 5.8 13 (19/4Ro16).				
1511.94 10	1.0 2	2161.8?	(1/2, 3/2, 5/2)	649.7	1/2 ,3/2		$\sqrt[n]{\gamma=0.33}$				
1600.8 5	2.1.3	1062.8	1/2 ,3/2	62.0	(1/2)		$\%1\gamma = 0.69$ 11				
1616.6" 5	2.2.3	3279.4?	(1 10 0 10 5 10)=	1662.8	1/2 ,3/2		$\sqrt[9]{\eta} = 0.73 II$				
1688.5 5	6.70	18/9.4	(1/2, 3/2, 5/2)	190.8	5/2		$\sqrt{1}\gamma = 2.22 \ 24$				
1016 2 15	102	1970 4	$(1/0, 2/0, 5/0)^{-1}$	(2.0	$(1/2)^{-1}$		E_{γ} : other: 1088.4 3 with $I\gamma = 10.9$ 10 (19/4K010).				
1810.3 13	1.2.3	18/9.4	(1/2, 3/2, 5/2)	02.0	(1/2)		$\%1\gamma = 0.40 \ 10$				
18/9.2 5	2.97	18/9.4	(1/2, 5/2, 5/2)	0	5/2		$\%1\gamma = 0.90\ 24$ E : other: 1870.6.6 (1074Po16)				
							E_{γ} . Older: 10.9.76 from 1974R016 is discrement				
10020 2	123	1001 72		0	3/2-		γ_{γ} . other: 10.9 To from 1974 Koro is discrepant.				
1902 2 2000 6 ^{<i>a</i>} Λ	1.2.3	2161.82	$(1/2^{-} 3/2^{-} 5/2^{-})$	62.0	$\frac{3/2}{(1/2)^{-}}$		$\frac{1}{2} = 0.40 \ 10$				
2099.0 +	1.0 2.2	2020.62	(1/2, 3/2, 3/2)	800.2	(1/2) 1/2 = 2/2 =		(1) = 1.7 + 1.5				
2121.0000 10	1.0 2 3	2929.0?		809.2	1/2 ,5/2		$\%1\gamma = 0.55 \ 10$				
2121.6 cu 10	1.0 3	3197.1?		1075.8	7/2(-)		$\%1\gamma = 0.33 \ 10$				
2162.6 ^{<i>a</i>} 12	1.6 3	2161.8?	$(1/2^{-}, 3/2^{-}, 5/2^{-})$	0	3/2-		$\%1\gamma = 0.53 \ 10$				
*2219 2	0.7 4			< 10 -			$\%1\gamma = 0.23$ 13				
2279.5 ^a 5	1.0 3	2929.6?		649.7	1/2-,3/2-		$\%1\gamma = 0.33 \ 10$				
2387.6 ^a 10	1.1.5	3197.1?		809.2	$1/2^{-},3/2^{-}$		$\%1\gamma = 0.36 17$				
~2448.0 4	4.2.5	2250 43		000 -	1 /2- 2 /2-		$\%1\gamma = 1.39$ 18				
2469.3° 15	1.0 2	3279.4?		809.2	1/2 ,3/2		$\frac{1}{2}$				
~2703.5 15	0.6 3						$\%1\gamma = 0.20 \ I0$				
~2/1/.2 <i>15</i>	1.0 3						$\%1\gamma = 0.55 \ IU$				
~2968.5 12	1.5 2	2005 22		0	2/2-		$\frac{1}{2}$				
3085.9° 15	0.73	3085.3?		0	3/2		$\%1\gamma = 0.25 \ IU$				
3280° 2	0.9.2	3279.4?		0	3/2		%1γ=0.30 /				

 $^{65}_{31}{
m Ga}_{34}$ -6

L

$\gamma(^{65}\text{Ga})$ (continued)

[†] From 1973Jo12, unless otherwise noted. Original values in 1974Ro16 is reported as absolute intensities and values quoted here as from 1974Ro16 are from renormalization by the evaluator of those %I γ to relative intensity I γ =100 for 650 γ .

[‡] From Adopted Gammas.

[#] For absolute intensity per 100 decays, multiply by 0.331 *19*.

^(e) Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with "Frozen Orbitals" approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

[&] Multiply placed with undivided intensity.

^{*a*} Placement of transition in the level scheme is uncertain.

^{*x*} γ ray not placed in level scheme.

From ENSDF

⁶⁵Ge ε + β ⁺ decay (30.9 s) 1973Jo12,1987Vi01

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays & Multiply placed: undivided intensity given

Legend

$I_{\gamma} < 10\% \times I_{\gamma}^{max}$ $I_{\gamma} > 10\% \times I_{\gamma}^{max}$ $\gamma \text{ Decay (Uncertain)}$	$\%\varepsilon + \%\beta^+ = 100$	$(3/2)^{-}$ 0 $Q_{\varepsilon}=6179.3\ 23$ $(65)_{32}Ge_{33}$	30.9 s 7	
	/	$I\beta^+$	<u>Iɛ</u>	Log ft
	5993		0.00012	56
	5927		0.0000008	6.0
	5920		0.00024	5.6
			0.00013	5.9
	5844		0.00045	5.5 5.5
	5799		0.00045	5.5
	5757		0.00015	6.2
	5708		0.00030	6.0
	5656		0.00052	5.8
/	5642		0.00057	5.8 5.9
	5596		0.00027	6.2
/	5562		0.00010	6.7
/	5552		0.00027	6.3
	5480		0.00066	6.0 6.5
/	5467		0.00020	6.8
	5436		0.00024	6.5
/	5393		0.0000007	7.1
(1/2 ⁺)	5384		0.00060	6.2
	5338		0.00020	0.7 6.5
	5298		0.00050	6.3
	5239		0.00114	6.0
	5192		0.00017	6.9
	5065		0.00084	6.3 7.1
2,2,3 2,3,4 2,1,5 2,2,2,5 2,2,2,5 2,2,2,5 2,2,2,2,			0.00013	7.1
	32794	1.22	0.144	4.01
	SS 3197.1	0.64	0.144	5.3
	3085.3	1.79	0.157	4.93
·	2046.3	1.36	0.035	5.84
	$- 1901.7$	0.29	0.007	6.6
	18/9.4	5.4	0.118	5.34
<u>1/2⁻,3/2⁻</u>	1662.8	0.68	0.0123	6.4
7/2 ⁽⁻⁾	1075.8	0.34	0.009	8.6 ^{1u}
1/2-,3/2-	809.2	19.6	0.187	5.34
3/2-	0 15.13	3 min 28		
$^{65}_{31}\text{Ga}_{34}$				

⁶⁵Ge ε+ $β^+$ decay (30.9 s) 1973Jo12,1987Vi01

65 31Ga₃₄

9