		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 202,59 (2025)	25-Feb-2025

Parent: ⁶⁵Mn: E=0; $J^{\pi}=(5/2^{-})$; $T_{1/2}=91.9$ ms 9; $Q(\beta^{-})=10251$ 6; $\%\beta^{-}$ decay=100

⁶⁵Mn-J^π, T_{1/2}: From Adopted Levels of ⁶⁵Mn. Adopted T_{1/2} is from β-delayed 363.7γ(t) in the decay of ⁶⁵Mn in 2013Ol06, where a value of 92.0 ms 13 is also reported using five other γ transitions 455.6 γ , 569.1 γ , 683.3 γ , 725.2 γ and 1002.9 γ . Other:

92 ms 1 (2005GaZR). See Adopted Levels of 65 Mn for more measurements of $T_{1/2}$ of 65 Mn.

 65 Mn-Q(β^{-}): From 2021Wa16.

Adapted from the XUNDL dataset for 2013Ol06 compiled by B. Singh (McMaster), on November 25, 2013.

2013Ol06: ⁶⁵Mn source was produced in bombardment of UC_x/graphite target by 1.4-GeV pulsed protons at the ISOLDE-CERN facility. Reaction products were diffused out of the target, ionized by selective resonant ionization using RILIS, mass separated by General Purpose Separator (GPS) and implanted into a thin Al foil. β particles were detected with a fast-timing plastic scintillator and γ rays were detected with two LaBr₃(Ce) and two HPGe detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\beta\gamma(t)$, $\beta\gamma\gamma(t)$. Deduced levels, J, π , T_{1/2}, decay branching ratios, log *ft*, γ -ray transition strengths. Comparisons with available data and large-scale shell-model calculations with the Lenzi-Nowacki-Poves-Sieja (LNPS) interaction.

2005GaZR (thesis): ⁶⁵Mn source was produced by fragmentation of a 61.8 MeV/nucleon ⁷⁶Ge beam on a ⁵⁸Ni target at GANIL. Measured E γ , I γ . Deduced levels, J, π , decay branching ratios, log *ft*. Report 5 transitions.

⁶⁵Fe Levels

E(level) ^{†‡}	$J^{\pi \#}$	T _{1/2} @	Comments
0.0	$(1/2^{-})$	$0.805^{\&}$ s 10	
303.65.17	$(9/2^+)$	$1.12^{\circ} \circ 15$	Ø ₀ β [−] −100
575.05 11	()[2])	1.12 3.15	No direct β feeding is expected from (5/2 ⁻) parent state. Indirect feeding through 215.8 γ from 609.5 level is 1.56% 12. 2013O106 report a total relative β decay intensity of this isomer=7.9 10 relative to I γ (364.7 γ)=100, from intensities of γ transitions only from the β decay of this isomer. This is equivalent to %I(β decay of isomer)=3.94 54 per 100 ⁶⁵ Fe decays, greater than 1.56% indirect feeding above, which may indicate there are missing transitions that feed this isomer.
397.56 7	$(5/2^+)$	420 ^{&} ns <i>13</i>	$T_{1/2}$: other: 437 ns 55 from 2013Ol06.
455.59 5	$(5/2^{-})$	350 ps 10	
560.74 6	(3/2,5/2 ⁻)	390 ps <i>30</i>	$T_{1/2}$: from Table IV and text of 2013Ol06, uncertainty is listed as 50 ps in authors' level-scheme figure 7 and table II.
569.05 6	(3/2,5/2 ⁻)	<12 ps	J^{π} : (1/2,3/2) proposed in 2013Ol06 by excluding E2 and M2 for 569 γ to (1/2 ⁻) ground state. However, E2 cannot be completely ruled out based on RUL=300 for B(E2)W.u., which would only require a T _{1/2} >1.9 ps that overlaps with the limit of <12 ps proposed in 2013Ol06.
609.45 <i>14</i>	$(7/2^+)$		
683.26 5	(3/2,5/2 ⁻)	24 ps 12	$T_{1/2}$: from Table IV and text of 2013Ol06, uncertainty is listed as 10 ps in authors' level-scheme figure 7.
894.72 7	$(7/2^{-})$	<27 ps	č
1057.29 6	$(3/2^{-}, 5/2^{-})$	$< 8^{a}$ ps	
1088.80 <i>5</i> 1228.19 <i>21</i>	$(3/2^-, 5/2^-)$ (3/2, 5/2, 7/2)	<8 ^{<i>a</i>} ps	
1366.62 6 1372.36 11 1449.1 4 1457.2 5 1472.0 6 1530.0 5 1558.86 7	$(5/2^{-}) (3/2^{+}, 5/2, 7/2) (1/2^{+}, 3/2, 5/2^{-}) (3/2, 5/2, 7/2) (1/2, 3/2, 5/2^{-}) (3/2^{-}) (3/2^{-}, 5/2^{-}) (3/2^{-$	<8 ^{<i>a</i>} ps	
10/4.2 /	(1/2,3/2,3/2)		

65 Mn β^- decay (91.9 ms) 2013Ol06 (continued)

⁶⁵Fe Levels (continued)

E(level) ^{†‡}	J ^{##}	Comments
1693.67 10	$(3/2^{-}, 5/2^{-})$	
1732.51 15	$(5/2^{-})$	
1853.34 16	$(3/2^{-}, 5/2, 7/2)$	
2001.93 16	$(3/2^+, 5/2, 7/2)$	
2301.3 8	$(1/2, 3/2, 5/2^{-})$	
2341.5 7	$(1/2, 3/2, 5/2^{-})$	
2520.18 41	$(1/2^+ \text{ to } 7/2)$	
2639.0 8	$(1/2, 3/2, 5/2^{-})$	
2690.5 8	$(1/2^+, 3/2, 5/2^-)$	
2780.3 8	$(1/2^+, 3/2, 5/2^-)$	
2839.9 8	$(1/2^+, 3/2, 5/2^-)$	
2898.5 8	$(1/2^+ \text{ to } 7/2^-)$	
2932.49 41	(3/2,5/2,7/2)	
3013.5 5	$(3/2, 5/2^{-})$	
3245.1 7	(3/2,5/2,7/2)	
3306.1 9	$(1/2^+, 3/2, 5/2^-)$	
3374.0 8	$(1/2^+, 3/2, 5/2^-)$	
3399.3 5	$(1/2^+ \text{ to } 7/2^-)$	
3421.0 9	$(1/2^+, 3/2, 5/2^-)$	
4095.84 41	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	
4438.4 9	$(3/2, 5/2^{-})$	
4320+x		E(level): x<5931 5 from $Q(\beta^{-})(^{65}Mn)$ -S(n)(^{65}Fe), where $Q(\beta^{-})=10251$ 6 and S(n)=4320 7
		from $2021Wa16$. This represents a range of unobserved levels that subsequently decay to ^{64}Fe via one-neutron emission.

[†] Additional information 1.

^{\ddagger} From a least-squares fit to γ -ray energies. 796.9 γ from 1367 level was not included in the fit due to its poor energy agreement.

[#] From Adopted Levels. Assignments up to 1367 level from 2013Ol06 are given under comments if different.

[@] From $\beta\gamma(t)$ for 364, 456 and 561 levels and from $\beta\gamma\gamma(t)$ for other levels in 2013Ol06, unless otherwise stated. The same values are adopted in Adopted Levels.

& From Adopted Levels.

^a Limit is estimated by 2013Ol06 for levels used as semi-prompt reference in time-response calibrations of the fast-timing detectors.

β^- radiations

av E β : Additional information 2.

The decay scheme is considered fairly complete by the evaluator, considering possibly a small amount of missing transitions. See comments for 393.6-keV isomeric level.

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(2.9×10 ³ [@] 29)	4320+x	7.9 12	4.4	av E β =2702.3 I β^- : from adopted $\%\beta^-$ n=7.9 12 for ⁶⁵ Mn decay, deduced by 2013Ol06 based on their measured intensity of 1345.8 γ in ⁶⁴ Ni from the decay chain of ⁶⁵ Mn β^- n decay to ⁶⁴ Fe, then β^- decay to ⁶⁴ Co, then β^- decay to ⁶⁴ Ni, and $\%$ I γ (1345.8 γ)=7.54 deduced by 2013Ol06 using data in 2012Pa39 for ⁶⁴ Co β^- decay.
(5813 6)	4438.4	0.16 6	6.0 2	av $E\beta = 2644.9\ 29$ $I\beta^{-1} \cdot 0.2\ I\ (20130106)$
(6155 6)	4095.84	0.32 7	5.9 1	av $E\beta$ =2811.3 29 I β ⁻ : 0.3 <i>I</i> (2013O106).

Continued on next page (footnotes at end of table)

⁶⁵Mn $β^-$ decay (91.9 ms) 2013Ol06 (continued)

β^{-} radiations (continued)

E(decay)	E(level)	Ιβ ^{-†‡}	Log ft	Comments
(6830 6)	3421.0	0.16 6	6.4 2	av Eβ=3140.0 29
				$I\beta^{-}: 0.2 \ I \ (2013O106).$
				Log ft: calculated as allowed for $J(3421)=3/2,5/2^-$; for $J=1/2^+$, it should be 8.4 2
(6852.6)	3300 3	0.16.6	642	av $F\beta = 3150.7.29$
(0052.0)	5577.5	0.10 0	0.4 2	$I\beta^{-1}: 0.2 \ I \ (20130106).$
				Log ft: calculated as allowed for $J(3399)=3/2,5/2,7/2^-$; for $J=1/2^+$, it should be 8.4
				2 for 1st forbidden unique.
(6877 6)	3374.0	0.11 6	6.5 + 3 - 2	av $E\beta = 3162.9\ 29$
				1β : 0.1 I (20130106).
				+3-2 for 1st forbidden unique.
(6945 6)	3306.1	0.16 6	6.4 2	av E β =3196.0 29
				$I\beta^{-}$: 0.2 <i>1</i> (2013Ol06).
				Log <i>ft</i> : calculated as allowed for $J(3306)=3/2,5/2^-$; for $J=1/2^+$, it should be 8.5 2
(7006 6)	2245 1	0.22.6	62 1 2 1	for 1st forbidden unique. EF = 2225.7 - 20
(7000-0)	5245.1	0.22 0	0.3 + 2 - 1	$I_{P}=3223.7.29$ $I_{R}=0.3.7.(20130106)$
(7238 6)	3013.5	0.43 9	6.1 <i>I</i>	av $E\beta$ =3338.7 29
. ,				$I\beta^{-1}$: 0.5 1 (2013O106).
(7319 6)	2932.49	0.32 7	6.2 1	av $E\beta = 3378.2.29$
(7252.6)	2000 5	0166	(5)	$1\beta^{-}: 0.4 \ I \ (20130106).$
(7555-0)	2090.3	0.10 0	0.3 2	$I_{P} = 3394.8 \ 29$ $I_{R} = (0.2 \ I_{1} (20130106))$
				Log <i>ft</i> : calculated as allowed for $J(2899)=3/2.5/2.7/2^{-1}$; for $J=1/2^{+}$, it should be 8.6
				2 for 1st forbidden unique.
(7411 6)	2839.9	0.16 6	6.5 2	av E β =3423.0 29
				$I\beta^{-}: 0.2 I (20130106).$
				Log <i>ft</i> : calculated as allowed for $J(2840)=3/2, 5/2$; for $J=1/2^{+}$, it should be 8.6.2 for 1st forbidden unique
(7471.6)	2780.3	0.11 6	6.7 + 3 - 2	av $E\beta$ =3452.3 29
				$I\beta^{-}: 0.1 \ I \ (2013O106).$
				Log ft: calculated as allowed for $J(2780)=3/2,5/2^-$; for $J=1/2^+$, it should be 8.8
	0.000 5	0.11.6		+3-2 for 1st forbidden unique.
(7561.6)	2690.5	0.11 0	6.7 +3-2	av $B = 3496.1.29$ $B^{-1} = 0.1.1.(2013 \cap 106)$
				Log <i>ft</i> : calculated as allowed for $J(2691)=3/2.5/2^{-1}$: for $J=1/2^{+}$, it should be 8.9
				+3-2 for 1st forbidden unique.
(7612 6)	2639.0	< 0.11	>6.7	av E β =3521.0 29
(7721 ()	2520 10	0.00 ((5.2.1	$I\beta^-: 0.1 \ I \ (2013Ol06).$
(7731-0)	2520.18	0.22 0	6.5 + 2 - 1	av $E\beta = 35/9.0/29$ $I\beta^{-1} \cdot 0.2/J (2013O106)$
				Log <i>ft</i> : calculated as allowed for $J(2520)=3/2.5/2.7/2$; for $J=1/2^+$, it should be 8.6
				+2-1 for 1st forbidden unique.
(7910 6)	2341.5	< 0.11	>6.8	av E β =3666.2 29
(7050 ()	2201.2	.0.11	. ()	$I\beta^-: 0.1 \ I \ (2013Ol06).$
(7950-0)	2301.5	<0.11	>0.8	$I_{\mu} = 5085.7.29$ $I_{\mu} = 0.1.7.(20130106)$
(8249 6)	2001.93	0.59 12	6.2 1	av $E\beta$ =3831.4 29
. ,				$I\beta^{-1}$: 0.7 1 (2013O106).
(8398 6)	1853.34	1.08 17	6.0 1	av E β =3904.1 29
(9510 6)	1720 51	1 94 12	5 02 5	$I\beta^{-}: 1.2 I (20130106).$
(0.019.0)	1/32.31	1.24 13	J.92 J	av $Ep=3902.0.29$ $IB^{-1} \cdot 1.4 I (20130106)$
(8557 6)	1693.67	1.24 12	5.93 5	av E β =3981.6 29
. /				$I\beta^{-1}$: 1.3 <i>1</i> (2013Ol06).
(8577 6)	1674.2	< 0.11	>7.0	av E β =3991.3 29

Continued on next page (footnotes at end of table)

$^{65}\mathrm{Mn}\,\beta^-$ decay (91.9 ms) 2013Ol06 (continued)

β^- radiations (continued)

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
				$I\beta^{-}: 0.1 \ l \ (2013Ol06).$
(8692 6)	1558.86	2.21 19	5.71 4	av E β =4047.4 29
				$I\beta^{-}$: 2.4 <i>1</i> (2013Ol06).
(8721 6)	1530.0	0.11 6	7.0 + 3 - 2	av $E\beta = 4061.5\ 29$
(0770 0	1 452 0	0.11	T 0	$I\beta^-: 0.2 I (2013O106).$
(8//9 6)	1472.0	<0.11	>7.0	av $E\beta = 4089.8\ 29$
(9704 ()	1457.0	0 42 7	6 4 1	$I\beta : 0.1 T (20130106).$
(8794-0)	1457.2	0.43 /	6.4 <i>I</i>	av $E\beta = 4097.129$
(8802 6)	1440-1	0.22.6	67 1 2 1	$\frac{10}{10} = 0.5 T (20150100).$
(8802-0)	1449.1	0.22 0	0.7 + 2 - 1	$IR \rightarrow 0.3 I (20130106)$
				I og fr. calculated as allowed for $I(1449)=3/2$ and $5/2^-$: for $I=1/2^+$ it should be
				$90 \pm 2 - 1$ for 1st forbidden unique
(8879 6)	1372 36	0 27 9	67 + 2 - 1	av $F\beta = 4138529$
(0075 0)	1372.30	0.27 >	0.7 12 1	$I\beta^{-1}: 0.3 \ I \ (2013) 0106)$
(8884 6)	1366.62	5.77.35	5.34 4	av $EB = 4141.0.29$
(0001.0)	1000102	0177 00	01011	$I\beta^{-}: 6.3.3 (20130106).$
(9023 6)	1228.19	0.22 6	6.8 + 2 - 1	av $E\beta = 4208.729$
				$I\beta^{-}: 0.2 \ I \ (2013O106).$
(9162 6)	1088.80	18.9 12	4.88 <i>3</i>	av E β =4276.5 29
				$I\beta^{-}$: 20.7 9 (2013O106).
(9194 6)	1057.29	2.64 22	5.74 4	av E β =4292.1 29
				$I\beta^{-}$: 2.9 2 (2013Ol06).
(9356 6)	894.72	1.19 24	6.1 <i>1</i>	av E β =4371.0 29
				$I\beta^{-}$: 1.4 2 (2013O106).
(9568 6)	683.26	1.9 4	6.0 1	av $E\beta = 4474.3\ 29$
(0(12.0)	600.45	0.00 10	6.0.1	$I\beta^{-}: 2.1 \ 3 \ (2013O106).$
(9642-6)	609.45	0.92 19	6.3 1	av $E\beta = 4510.4.29$
(0692 6)	560.05	0.9.4	61 2 2	$I\beta : 1.0 T (20150100).$
(9082-0)	509.05	0.8 4	0.4 + 3 - 2	aV = Ep = 4.529.9.29 $IR^{-1} = 0.0.4 (2013 - 0.06)$
(0600 6)	560 74	1 1/1 22	621	$FF = 4533 \ 8 \ 20$
(9090-0)	500.74	1.14 22	0.2 1	$I\beta^{-1} \cdot 152(20130106)$
(9795 6)	455 59	7113	541	FF = 4585 0.29
(),),0 ()	100105	/11 10	0111	$I\beta^-: 8.1 \ 11 \ (2013O106).$
(9853 [#] 6)	307 56	<0.79	>64	FB = 4613.2.29
()055 0)	571.50	<0.75	20.4	$I\beta^{-1} = 0.1.6 (20130106)$
(9887.6)	363.62	37.4.15	4.74.2	av $FB=4629.8.29$
(3007 0)	000102	071110		$I\beta^{-}: 42.5(20130106).$
$(10251^{\#})$	0.0	~8.8	>78	FE = 4806.3.20
(10231 0)	0.0	<0.0	27.0	$I\beta^{-1}$ estimated by 20130106 from the difference between the total intensities of
				γ transitions to 65 Co g s from the decay of 65 Fe g s (equivalent to total
				feedings to levels in 65 Co since no direct a s feeding) and α transitions to
				65 Ea ground state. If a s π is $5/2^{-1}$ for 65 Mn and $1/2^{-1}$ for 65 Ea then no θ
				For ground state. If g.s. J is $3/2$ for β will all $1/2$ for β re, then no β feeding is expected
				iccuing is captered.

[†] Deduced by the evaluator from intensity balance. Values from 2013Ol06 are higher by ≈12% and given under comments.
[‡] Absolute intensity per 100 decays.
[#] Existence of this branch is questionable.

[@] Estimated for a range of levels.

$\gamma(^{65}\text{Fe})$

I γ normalization, I(γ +ce) normalization: Deduced by 2013O106 from %I(β decay of g.s.)+%I(β decay of isomer)+% β^- n=100, where % β^- n=7.9 *12* (relative intensity=14.6 *21*) and relative I(β decay of g.s.)=163.61 *61* from γ intensities in ⁶⁵Co only from the β^- decay of ⁶⁵Fe g.s. and relative I(β decay of isomer)=7.3 *10* from γ intensities in ⁶⁵Co only from the β^- decay of this isomer, relative to I γ (363.7 γ)=100.

E_{γ}^{\ddagger}	I_{γ} ^{‡&}	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	$I_{(\gamma+ce)}^{\&}$	Comments
33.9 2	1.9 5	397.56	(5/2+)	363.62	(3/2 ⁻)	[E1]	1.127 25	4 1	ce(K)/(γ +ce)=0.477 6; ce(L)/(γ +ce)=0.0467 12; ce(M)/(γ +ce)=0.00631 16 ce(N)/(γ +ce)=0.000255 6 α (K)=1.014 23; α (L)=0.0994 23; α (M)=0.01343 30 α (N)=0.000542 12 I(γ +ce): from time-delayed component of the 363.7 γ .
92.0 1	0.8 1	455.59	(5/2 ⁻)	363.62	(3/2 ⁻)	[M1]	0.0439 6		$\alpha(K)=0.0394 \ 6; \ \alpha(L)=0.00391 \ 6; \ \alpha(M)=0.000539 \ 8 \ \alpha(N)=2.428\times10^{-5} \ 35 \ \%I\gamma=0.43 \ 6$
114.5 3	0.2 [#] 1	683.26	$(3/2, 5/2^{-})$	569.05	$(3/2, 5/2^{-})$	[D,E2]			%Iγ=0.11 <i>6</i>
163.1 <i>1</i>	0.7 1	560.74	(3/2,5/2 ⁻)	397.56	(5/2+)	[M1,E1]	0.00969 20		α (K)=0.00872 <i>18</i> ; α (L)=0.000843 <i>25</i> ; α (M)=0.000116 <i>4</i> α (N)=5.25×10 ⁻⁶ <i>20</i> %I γ =0.38 <i>6</i>
197.6 <i>3</i>	1.4 [#] 1	560.74	(3/2,5/2 ⁻)	363.62	(3/2 ⁻)	[M1,E1]	0.0057 4		α (K)=0.00514 33; α (L)=0.00050 4; α (M)=6.8×10 ⁻⁵ 5 α (N)=3.10×10 ⁻⁶ 25 %I γ =0.76 6
205.3 2	0.3 1	569.05	$(3/2, 5/2^{-})$	363.62	$(3/2^{-})$	[D,E2]			$\%$ I γ =0.16 6
215.8 <i>1</i>	2.9 2	609.45	$(7/2^+)$	393.65	$(9/2^+)$				%Iy=1.56 <i>12</i>
227.7 1	2.5 2	683.26	$(3/2, 5/2^{-})$	455.59	$(5/2^{-})$	[D,E2]			%Iy=1.35 <i>12</i>
319.7 <i>1</i>	4.4 3	683.26	$(3/2, 5/2^{-})$	363.62	$(3/2^{-})$	[D,E2]			%Iy=2.37 18
363.7 1	100	363.62	(3/2 ⁻)	0.0	(1/2 ⁻)	[M1,E2]	0.0027 13		$\alpha(K)=0.0024 \ II; \ \alpha(L)=2.3\times10^{-4} \ II; \ \alpha(M)=3.2\times10^{-5} \ I5$ $\alpha(N)=1.4\times10^{-6} \ 7$ $\%I\gamma=54$
374.1 <i>1</i>	1.0 1	1057.29	$(3/2^{-}, 5/2^{-})$	683.26	$(3/2, 5/2^{-})$	[D,E2]			$\%$ I γ =0.54 6
393.7 ^b	<0.15	393.65	(9/2+)	0.0	(1/2 ⁻)	[M4]	0.0521 7		
397.6 ^b	< 0.15	397.56	$(5/2^+)$	0.0	$(1/2^{-})$	[M2]	0.00417 6		$\alpha(K)=0.00374$ 5; $\alpha(L)=0.000370$ 5; $\alpha(M)=5.10\times10^{-5}$ 7

 \mathbf{v}

				6	5 Mn β^{-} dec	ay (91.9 ms) 2013Ol06 (c	continued)		
γ ⁽⁶⁵ Fe) (continued)										
E_{γ}^{\ddagger}	Ι _γ ‡&	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π}	Mult.	α^{\dagger}	Comments		
					¥			$\alpha(N)=2.325\times10^{-6}$ 33 %I γ <0.081 E_{γ} , I_{γ} : 397.6 γ with implied M2 multipolarity is not seen, upper limit of intensity established by 2013Ol06 as <0.15 relative to 100 for 363.7 γ .		
405.6 1	1.8 <i>I</i>	1088.80	$(3/2^{-}, 5/2^{-})$	683.26	$(3/2, 5/2^{-})$	[D,E2]		%Iy=0.97 7		
439.2 1	3.5 3	894.72	(7/2 ⁻)	455.59	(5/2 ⁻)	[M1,E2]	0.0015 6	$\alpha(\mathbf{K})=0.0013 5; \alpha(\mathbf{L})=1.3\times10^{-4} 5; \alpha(\mathbf{M})=1.8\times10^{-5} 7$ $\alpha(\mathbf{N})=8.1\times10^{-7} 31$ %Iy=1.89 18		
455.6 1	24.4 18	455.59	(5/2 ⁻)	0.0	(1/2 ⁻)	[E2]	1.84×10 ⁻³ 3	$\alpha(K)=0.001652\ 23;\ \alpha(L)=0.0001600\ 22;\ \alpha(M)=2.199\times10^{-5}\ 31\ \alpha(N)=9.93\times10^{-7}\ 14\ \%I\gamma=13.2\ 11$		
472.0 1	0.9 1	1366.62	(5/2 ⁻)	894.72	(7/2 ⁻)	[M1,E2]	0.0012 4	α (K)=0.0011 4; α (L)=1.0×10 ⁻⁴ 4; α (M)=1.4×10 ⁻⁵ 5 α (N)=6.5×10 ⁻⁷ 23 %I γ =0.49 6		
488.3 2	0.2 1	1057.29	$(3/2^-, 5/2^-)$	569.05	$(3/2, 5/2^{-})$	[D,E2]		%Iy=0.11 6		
510.8.1	0.2 I	1088 80	$(3/2^{-} 5/2^{-})$	560.05	$(3/2 5/2^{-})$	[D E2]		$\%1\gamma = 0.11 0$ $\%1\gamma = 2.22 18$		
528 1 1	4.55	1088.80	(3/2, 3/2) $(3/2^{-} 5/2^{-})$	560 74	$(3/2, 5/2^{-})$	[D,E2]		$\sqrt{1} = 2.52$ 18 $\sqrt{1} = 0.49$ 6		
531.1 <i>I</i>	1.1 <i>I</i>	894.72	(7/2 ⁻)	363.62	(3/2 ⁻)	[E2]	1.12×10 ⁻³ 2	$\alpha(K) = 0.001013 \ 14; \ \alpha(L) = 9.77 \times 10^{-5} \ 14; \alpha(M) = 1.344 \times 10^{-5} \ 19 \alpha(N) = 6.10 \times 10^{-7} \ 9 \% I\gamma = 0.59 \ 6$		
560.8 1	2.7 2	560.74	$(3/2, 5/2^{-})$	0.0	$(1/2^{-})$	[D,E2]		%Iγ=1.46 <i>12</i>		
569.1 <i>1</i>	8.4 6	569.05	$(3/2, 5/2^{-})$	0.0	$(1/2^{-})$	[D,E2]	4	%Iy=4.5 4		
601.7 <i>1</i>	0.9 1	1057.29	(3/2 ⁻ ,5/2 ⁻)	455.59	(5/2 ⁻)	[M1,E2]	6.1×10 ⁻⁴ 16	$\alpha(K)=5.5\times10^{-4}$ 14; $\alpha(L)=5.3\times10^{-5}$ 14; $\alpha(M)=7.3\times10^{-6}$ 19 $\alpha(N)=3.3\times10^{-7}$ 9 %Iy=0.49 6		
633.2 1	2.2 2	1088.80	(3/2 ⁻ ,5/2 ⁻)	455.59	(5/2 ⁻)	[M1,E2]	0.00053 13	$\alpha(K)=0.00048 \ 12; \ \alpha(L)=4.6\times10^{-5} \ 11; \ \alpha(M)=6.3\times10^{-6} \ 16 \ \alpha(N)=2.9\times10^{-7} \ 7 \ \%I\gamma=1.19 \ 12$		
659.7 1	0.8 1	1057.29	(3/2 ⁻ ,5/2 ⁻)	397.56	(5/2+)	[E1]	0.0002038 29	$\begin{aligned} &\alpha(\mathbf{K}) = 0.0001838\ 26;\ \alpha(\mathbf{L}) = 1.747 \times 10^{-5}\ 24;\\ &\alpha(\mathbf{M}) = 2.404 \times 10^{-6}\ 34\\ &\alpha(\mathbf{N}) = 1.111 \times 10^{-7}\ 16\\ &\% I\gamma = 0.43\ 6 \end{aligned}$		
683.3 ^{a@} 1	3.6 ^{a@} 3	683.26	$(3/2, 5/2^{-})$	0.0	$(1/2^{-})$	[D,E2]		%Iy=1.94 <i>18</i>		
683.3 ^{<i>a</i>@} 1	2.6 ^{<i>a</i>@} 2	1366.62	(5/2 ⁻)	683.26	(3/2,5/2 ⁻)	[D,E2]	0.00044 9	$\alpha(K)=0.00039 \ 8; \ \alpha(L)=3.8\times10^{-5} \ 8; \ \alpha(M)=5.2\times10^{-6} \ 11 \ \alpha(N)=2.4\times10^{-7} \ 5 \ \%I\gamma=1.40 \ 12$		

6

From ENSDF

 $^{65}_{26}{
m Fe}_{39}$ -6

					65 Mn β^- dec	cay (91.9 ms	s) 2013Ol06 (c	continued)
						$\gamma(^{65}\text{Fe})$	(continued)	
${\rm E_{\gamma}}^{\ddagger}$	Ι _γ ‡&	E _i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
691.5 5	<0.4	1088.80	(3/2 ⁻ ,5/2 ⁻)	397.56	(5/2+)	[E1]	0.0001831 26	$\begin{aligned} \alpha(K) &= 0.0001652 \ 23; \ \alpha(L) = 1.570 \times 10^{-5} \ 22; \\ \alpha(M) &= 2.160 \times 10^{-6} \ 30 \\ \alpha(N) &= 9.99 \times 10^{-8} \ 14 \\ \% I\gamma &= 0.11 \ 11 \\ F_{1} &= 1.51 \ 11 \\ F_{2} &= 1.51 \ 11 \ 11 \ 11 \\ F_{2} &= 1.51 \ 11 \ 11 \ 11 \ 11 \ 11 \ 11 \ 11$
693.7 <i>1</i>	2.2 2	1057.29	(3/2 ⁻ ,5/2 ⁻)	363.62	(3/2 ⁻)	[M1,E2]	0.00042 9	$E_{\gamma},I_{\gamma}: \gamma$ observed only in delayed coincidence of 563. / γ . $\alpha(K)=0.00038 \ 8; \ \alpha(L)=3.6\times10^{-5} \ 8; \ \alpha(M)=5.0\times10^{-6} \ 11$ $\alpha(N)=2.3\times10^{-7} \ 5$ $\%_{I}v=1.19 \ 12$
725.2 1	8.8 7	1088.80	(3/2 ⁻ ,5/2 ⁻)	363.62	(3/2 ⁻)	[M1,E2]	0.00038 7	$\alpha(K)=0.00034 7; \alpha(L)=3.2\times10^{-5} 6; \alpha(M)=4.5\times10^{-6} 9$ $\alpha(N)=2.1\times10^{-7} 4$ %Iy=4.7 4
757.2 2	0.2 1	1366.62	(5/2 ⁻)	609.45	(7/2+)	[E1]	0.0001499 21	$\alpha(\mathbf{K})=0.0001352 \ 19; \ \alpha(\mathbf{L})=1.284\times10^{-5} \ 18; \\ \alpha(\mathbf{M})=1.768\times10^{-6} \ 25 \\ \alpha(\mathbf{N})=8.19\times10^{-8} \ 11 \\ \%\mathbf{Lv}=0 \ 11 \ 6$
763.0.3	0.2.1	1372.36	$(3/2^+, 5/2, 7/2)$	609.45	$(7/2^+)$			$%I_{\nu}=0.116$
772.6 2	0.4 1	1228.19	(3/2, 5/2, 7/2)	455.59	$(5/2^{-})$			%Iy=0.22 6
796.4 <i>4</i>	0.9 2	1853.34	(3/2 ⁻ ,5/2,7/2)	1057.29	(3/2 ⁻ ,5/2 ⁻)			% I_{γ} =0.49 <i>11</i> I _{\gamma} : from Table I of 2013Ol06; uncertainty is listed as 0.1 in authors' level-scheme figure 7.
796.9 1	0.5 [#] 1	1366.62	(5/2 ⁻)	569.05	(3/2,5/2 ⁻)	[D,E2]		$\%$ I γ =0.27 6 E $_{\gamma}$: poor fit, level-energy difference=797.57.
805.9 2	0.3 1	1366.62	(5/2 ⁻)	560.74	(3/2,5/2 ⁻)	[D,E2]	0.00029 5	α (K)=0.00026 4; α (L)=2.5×10 ⁻⁵ 4; α (M)=3.4×10 ⁻⁶ 6 α (N)=1.59×10 ⁻⁷ 26 %Iy=0.16 6
811.6 <i>1</i>	0.3 1	1372.36	$(3/2^+, 5/2, 7/2)$	560.74	$(3/2, 5/2^{-})$			%Iγ=0.16 6
837.6 5	0.6 [#] 1	1732.51	(5/2-)	894.72	$(7/2^{-})$			%Iy=0.32 <i>6</i>
875.7 1	0.8 1	1558.86	$(3/2^-, 5/2^-)$	683.26	$(3/2, 5/2^{-})$			%Iγ=0.43 <i>6</i>
911.1 2	0.3 1	1366.62	(5/2 ⁻)	455.59	(5/2 ⁻)	[M1,E2]	0.000217 29	$\alpha(K)=0.000196\ 26;\ \alpha(L)=1.87\times10^{-5}\ 25;\alpha(M)=2.57\times10^{-6}\ 34\alpha(N)=1.19\times10^{-7}\ 15$ % Iv=0.16.6
958.5 2	0.9 1	1853.34	$(3/2^{-}, 5/2, 7/2)$	894.72	$(7/2^{-})$			%Iy=0.49 6
969.1 <i>I</i>	0.8 1	1366.62	(5/2 ⁻)	397.56	(5/2+)	[E1]	9.02×10 ⁻⁵ 13	$\alpha(K) = 8.14 \times 10^{-5} \ 11; \ \alpha(L) = 7.72 \times 10^{-6} \ 11; \alpha(M) = 1.063 \times 10^{-6} \ 15 \alpha(N) = 4.93 \times 10^{-8} \ 7 \% I \gamma = 0.43 \ 6$
989.7 <i>1</i>	0.7 1	1558.86	$(3/2^{-}, 5/2^{-})$	569.05	(3/2,5/2 ⁻)			%Iy=0.38 6
1001.6 5	0.8 [#] 1	1457.2	(3/2,5/2,7/2)	455.59	(5/2 ⁻)			%Iy=0.43 <i>6</i>
								-

7

 $^{65}_{26}\mathrm{Fe}_{39}$ -7

					65 Mn β^- de	cay (91.9 m	s) 2013Ol06 (continued)
						$\gamma(^{65}\text{Fe})$	(continued)	
${\rm E}_{\gamma}^{\ddagger}$	Ι _γ ‡&	E _i (level)	${ m J}^{\pi}_i$	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	$lpha^\dagger$	Comments
1002.9 <i>1</i>	4.8 4	1366.62	(5/2-)	363.62	(3/2 ⁻)	[M1,E2]	0.000175 19	$\alpha(K)=0.000158 \ 17; \ \alpha(L)=1.50\times10^{-5} \ 17; \ \alpha(M)=2.07\times10^{-6} \ 23$ $\alpha(N)=9.6\times10^{-8} \ 10$ %I $\gamma=2.59 \ 24$
^x 1051.5 5	0.2 1							%Iγ=0.11 6
1057.2 <i>1</i>	0.7 1	1057.29	(3/2 ⁻ ,5/2 ⁻)	0.0	(1/2 ⁻)	[M1,E2]	0.000156 16	$\alpha(K)=0.000140 \ 14; \ \alpha(L)=1.34\times10^{-5} \ 14; \ \alpha(M)=1.84\times10^{-6} \ 19 \ \alpha(N)=8.5\times10^{-8} \ 8 \ \%_{I\gamma}=0.38 \ 6$
1088.6 <i>1</i>	16.9 <i>13</i>	1088.80	(3/2 ⁻ ,5/2 ⁻)	0.0	(1/2 ⁻)	[M1,E2]	0.000146 14	α (K)=0.000132 <i>12</i> ; α (L)=1.25×10 ⁻⁵ <i>12</i> ; α (M)=1.73×10 ⁻⁶ <i>17</i> α (N)=8.0×10 ⁻⁸ <i>7</i> %Iv=9.1.8
1103.2 <i>1</i> 1123.0 2	1.4 <i>1</i> 0.6 <i>1</i>	1558.86 1732.51	$(3/2^{-}, 5/2^{-})$ $(5/2^{-})$	455.59 609.45	$(5/2^{-})$ $(7/2^{+})$			%1y=0.76 6 %1y=0.32 6
1124.6.5	$0.2^{\#}$ 1	1693 67	$(3/2^{-} 5/2^{-})$	569.05	$(3/2, 5/2^{-})$			%Iv=0 11 6
1132.4 5	0.2 1	1530.0	(3/2 ,3/2)	397.56	$(5/2^+)$			%I _y =0.11 6 I _y : from Table I of 2013Ol06; 0.3 listed in authors' level-scheme figure 7.
1161.5 <i>3</i>	0.5 1	1558.86	$(3/2^{-}, 5/2^{-})$	397.56	$(5/2^+)$			%Iy=0.27 <i>6</i>
1163.6 <i>3</i>	0.2 [#] 1	1732.51	$(5/2^{-})$	569.05	$(3/2, 5/2^{-})$			%Iy=0.11 6
1195.2 2	0.6 1	1558.86	$(3/2^{-}, 5/2^{-})$	363.62	$(3/2^{-})$			%Iy=0.32 <i>6</i>
1296.2 2	0.6 1	1693.67	$(3/2^{-}, 5/2^{-})$	397.56	$(5/2^+)$			%Iy=0.32 <i>6</i>
1318.7 2	0.6 1	2001.93	$(3/2^+, 5/2, 7/2)$	683.26	$(3/2, 5/2^{-})$			$\%1\gamma = 0.32$ 6
1330.0 1	1.2 1	1693.67	(3/2,5/2)	363.62	(3/2)		0 0001 415 00	$\%1\gamma = 0.65.6$
1366.2 4	0.3 1	1366.62	(5/2)	0.0	(1/2)	[E2]	0.0001415 20	$\alpha(\mathbf{K}) = 8.72 \times 10^{-5} 12; \ \alpha(\mathbf{L}) = 8.28 \times 10^{-5} 12; \ \alpha(\mathbf{M}) = 1.141 \times 10^{-5} 16$ $\alpha(\mathbf{N}) = 5.30 \times 10^{-8} 7; \ \alpha(\mathbf{IPF}) = 4.49 \times 10^{-5} 6$
1368.9.3	061	1732 51	$(5/2^{-})$	363 62	$(3/2^{-})$			$\%1\gamma = 0.100$ $\%1\gamma = 0.326$
1392.4 4	0.2 1	2001.93	$(3/2^+, 5/2, 7/2)$	609.45	$(7/2^+)$			$\%$ [γ =0.11 6
			((I _γ : from Table I of 2013Ol06; 0.3 listed in authors' level-scheme figure 7.
1397.8 <i>3</i>	0.2 1	1853.34	$(3/2^{-}, 5/2, 7/2)$	455.59	$(5/2^{-})$			%Iγ=0.11 6
1432.8 <i>3</i>	0.3 1	2001.93	$(3/2^+, 5/2, 7/2)$	569.05	$(3/2, 5/2^{-})$			%Iy=0.16 6
1449.1 4	0.4 1	1449.1	$(1/2^+, 3/2, 5/2^-)$	0.0	$(1/2^{-})$			$\%$ I γ =0.22 6
14/2.0 6	0.1 I	1472.0	$(1/2,3/2,5/2^{-})$	0.0	$(1/2^{-})$			$\%1\gamma = 0.05$ 5
1559.4 4	0.1 I	1558.80	(3/2, 3/2)	0.0	(1/2)			$\%1\gamma = 0.05 \ S$
1693 7 1	0.11 0.31	1693.67	(1/2,3/2,3/2) $(3/2^{-}5/2^{-})$	0.0	(1/2) $(1/2^{-})$			$\sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} \sqrt{2} $
1732.5.4	0.31	1732.51	$(5/2^{-})$	0.0	$(1/2^{-})$			%Iv=0.16.6
1951.1 4	0.4 1	2520.18	$(1/2^+)$ to 7/2)	569.05	$(3/2, 5/2^{-})$			%Iy=0.22 6
2301.3 8	0.1 1	2301.3	$(1/2,3/2,5/2^{-})$	0.0	$(1/2^{-})$			%Iy=0.05 5
2341.4 7	0.1 1	2341.5	$(1/2, 3/2, 5/2^{-})$	0.0	$(1/2^{-})$			%Iy=0.05 5

 ∞

From ENSDF

⁶⁵₂₆Fe₃₉-8

⁶⁵₂₆Fe₃₉-8

⁶⁵Mn $β^-$ decay (91.9 ms) 2013Ol06 (continued)

$\gamma(^{65}\text{Fe})$ (continued)

E_{γ}^{\ddagger}	Ι _γ ‡&	E _i (level)	J_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
2371.7 4	0.6 1	2932.49	(3/2, 5/2, 7/2)	560.74	$(3/2, 5/2^{-})$	%Iy=0.32 <i>6</i>
2444.8 7	0.3 1	3013.5	$(3/2, 5/2^{-})$	569.05	$(3/2, 5/2^{-})$	%Iy=0.16 6
						I_{γ} : from Table I of 2013Ol06; 0.6 listed in authors' level-scheme figure 7.
2534.8 8	0.3 1	2898.5	$(1/2^+ \text{ to } 7/2^-)$	363.62	$(3/2^{-})$	%Iγ=0.16 6
2561.8 7	0.4 1	3245.1	(3/2,5/2,7/2)	683.26	$(3/2, 5/2^{-})$	%Iy=0.22 6
2638.9 8	0.1 1	2639.0	$(1/2, 3/2, 5/2^{-})$	0.0	$(1/2^{-})$	%Iy=0.05 5
2690.4 8	0.2 1	2690.5	$(1/2^+, 3/2, 5/2^-)$	0.0	$(1/2^{-})$	%Iy=0.11 6
						I_{γ} : from Table I of 2013Ol06; 0.1 listed in authors' level-scheme figure 7.
2780.2 8	0.2 1	2780.3	$(1/2^+, 3/2, 5/2^-)$	0.0	$(1/2^{-})$	%Iy=0.11 6
2839.8 8	0.3 1	2839.9	$(1/2^+, 3/2, 5/2^-)$	0.0	$(1/2^{-})$	%Iy=0.16 6
3013.1 6	0.5 1	3013.5	$(3/2, 5/2^{-})$	0.0	$(1/2^{-})$	%Iy=0.27 6
						E_{γ} : from Table I of 2013Ol06; 3013.5 listed in authors' level-scheme figure 7.
3035.6 5	0.3 1	3399.3	$(1/2^+ \text{ to } 7/2^-)$	363.62	$(3/2^{-})$	%Iy=0.16 6
3306.0 9	0.3 1	3306.1	$(1/2^+, 3/2, 5/2^-)$	0.0	$(1/2^{-})$	%Iy=0.16 <i>6</i>
3373.9 8	0.2 1	3374.0	$(1/2^+, 3/2, 5/2^-)$	0.0	$(1/2^{-})$	%Iy=0.11 6
3420.9 9	0.3 1	3421.0	$(1/2^+, 3/2, 5/2^-)$	0.0	$(1/2^{-})$	%Iy=0.16 6
3535.0 4	0.6 1	4095.84	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	560.74	$(3/2, 5/2^{-})$	%Iy=0.32 6
4438.2 9	0.3 1	4438.4	$(3/2, 5/2^{-})$	0.0	$(1/2^{-})$	%Iy=0.16 6

9

[†] Additional information 3. [‡] From 2013O106. [#] From $\gamma\gamma$ -coin data (2013O106). [@] Doublet. Intensities for separate components obtained from $\gamma\gamma$ -coin spectra with gates on 374.1 γ and 405.6 γ .

[&] For absolute intensity per 100 decays, multiply by 0.539 19.

^{*a*} Multiply placed with intensity suitably divided.

^b Placement of transition in the level scheme is uncertain. ^x γ ray not placed in level scheme.

Decay Scheme (continued)

Decay Scheme (continued)

⁶⁵₂₆Fe₃₉