Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 202,59 (2025)	25-Feb-2025

 $Q(\beta^{-})=7967~6$; S(n)=4320~7; S(p)=15518~6; $Q(\alpha)=-11146~5$ 2021Wa16

S(2n)=11725 7, S(2p)=29620 70, $Q(\beta^{-}n)=503$ 21 (2021Wa16).

Mass measurements: 2022Po02 (mass excess=-51218.7 84), 2010Fe01 (M.E.=-51211.3 68), 1994Se12 (M.E.=-51290 280), 1990Tu01 (M.E.=-50740 250).

2019Ol02: ⁶⁵Fe was produced from decay of ⁶⁵Mn which was produced via U(p,X) with 1.4 GeV proton beam at CERN. Measured $\beta\gamma$ (t). Deduced ⁶⁵Fe T_{1/2}.

2005NiZZ,2004NiZY: ⁹Be(⁷⁶Ge,X) E=63 MeV at RIKEN. Measured yield.

1994Se12: ⁶⁵Fe was produced via ^{nat}Th(p,X) with 800 MeV proton beam from the Los Alamos Meson Physics Facility (LAMPF). Measured time-of-flight with the TOFI spectrometer. Deduced mass excess. See also 1990Tu01.

1994Cz02: ⁶⁵Fe produced from fragmentation of 500-MeV/u ⁸⁶Kr beam at GSI. Measured ion- β^- time correlation. Deduced half-life.

Additional information 1.

1985Gu14: 65 Fe was produced in Ta(86 Kr,X) with 33 MeV/nucleon 86 Kr beam at GANIL. Deduced evidence of 65 Fe. Theoretical calculations:

2010Sr02,2007Lu13: calculated levels, J, π .

1995Ri05: calculated binding energy.

⁶⁵Fe Levels

Cross Reference (XREF) Flags

			A ⁶⁵ M B ⁶⁶ M	In β^- decay (91.9 ms) In β^- n decay	D z E 2	⁵⁸ Ni(⁸⁶ Kr,X γ) ²³⁸ U(n,X)				
			с ⁹ Ве	(⁷⁶ Ge,X)	F ²	238 U(64 Ni,X γ)				
E(level) ^{†‡}	Jπ	T _{1/2} #	XREF			Comments				
0.0	(1/2 ⁻) [@]	0.805 s <i>10</i>	ABCDE	$%β^-=100$ J ^π : others: 5/2 ⁻ from shell-model calculations with GXPF1A interaction (2010Sr02); 3/2 ⁻ from shell-model calculations with fpg interaction (2007Lu13). T _{1/2} : from βγ(t) in 2019Ol02. Others: 0.81 s 5 (2009Pa16, βγ(t)); 0.45 s 15 (1994Cz02, implant-β(t)); 1.32 s 28 (1999So20, implant-β(t)); 0.45 s quoted in 2005GaZR.						
363.62 5	(3/2 ⁻)	93 ps <i>3</i>	AB D	J ^{π} : allowed β^- feeding (3/2 ⁻) is favored bec. 363.7 γ , compared to (2013O106). Others: T _{1/2} : 1998Gr14 in (⁸⁶ K level, but 33.5 γ -363.2 indicates that it shoul decay (2013O106) an	(log ft) ause (5 those of (3/2 ⁺). $(3/2^+)$. $(3/2^+)$. $(3/2^+)$. $(3/2^+)$. $(3/2^+)$.	=4.7) from (5/2 ⁻) parent; 363.7 γ to (1/2 ⁻); 5/2 ⁻) would result a large B(E2)(W.u)=62 for of neighboring even-even Fe isotopes assign a T _{1/2} =0.43 μ s 13 from γ (t) to this a seen in 2006DaZX also in (⁸⁶ Kr,X γ) for 397 level. This is also confirmed in ⁶⁵ Mn β^- n β^- n decay (2018St18).				
393.64 ^{&} 18	(9/2 ⁺) [@]	1.12 s <i>15</i>	A C EF	$\%\beta^{-}=100$ XREF: C(402)E(397) E(level): others: 397 12 g.s. and isomer in ²³³ difference in ⁹ Be(⁷⁶ C	2 from ⁸ (p,X) Ge,X) b	difference between measured mass excesses of by 2022Po02; 402 <i>11</i> from measured mass by 2010Fe01.				
397.56 7	(5/2+)	420 ns 13	AB D	J^{π} : 33.9 γ to (3/2 ⁻) is m the very weak β feed	ling fro	(2009 a dipole; π =+ may be expected to explain om (5/2 ⁻) parent and the unobserved 397.6 γ is				

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁶⁵Fe Levels (continued)

E(level) ^{†‡}	J^{π}	$T_{1/2}^{\#}$	XREF	Comments		
				most likely to be M2 (2013Ol06).		
				$T_{1/2}$: from (⁸⁶ Kr,X γ). Others: 437 ns 55 from ⁶⁵ Mn β^- decay and 409		
				ns +29–27 from ⁶⁶ Mn β ⁻ n decay.		
455.59 5	(5/2 ⁻)	350 ps 10	AB	J ^{π} : allowed β^{-} feeding (log <i>ft</i> =5.4) from (5/2 ⁻) parent; 455.6 γ to (1/2 ⁻) is most likely to be E2 since it allows for a B(E2) value consistent		
560 74 6	$(3/2 5/2^{-})$	390 ns 30	٨R	with a core coupled state (20150106). I^{π_1} , β^- feeding (log f_{t-6} , 2, 1) from (5/2 ⁻) parent: 560.8% to (1/2 ⁻)		
560.05.6	(3/2, 5/2)	590 ps 50		$J : p^{-1}$ recalling (log $j_1 = 0.2.1$) from $(5/2^{-1})$ parent, 500.87 to $(1/2^{-1})$.		
609.45 <i>14</i>	(3/2,3/2) $(7/2^+)$	<12 ps	A	J [*] : β^- feeding (log <i>ft</i> =6.3 <i>I</i>) from (5/2 ⁻) parent; 215.8 γ to (9/2 ⁺); J<5/2 and π =- may be disfavored by the fact that no transitions to (1/2 ⁻) g.s., (3/2 ⁻) 364 level, and (5/2 ⁻) 456, while the transition of 215.8 γ to (9/2 ⁺) is relatively strong in ⁶⁵ Mn β^- decay.		
683.26 <i>5</i> 894.72 <i>7</i>	(3/2,5/2 ⁻) (7/2 ⁻)	24 ps <i>12</i> <27 ps	A A	J ^{π} : β^- feeding (log <i>ft</i> =6.0 <i>l</i>) from (5/2 ⁻) parent; 683.3 γ to (1/2 ⁻). J ^{π} : β^- feeding (log <i>ft</i> =6.1 <i>l</i>) from (5/2 ⁻) parent; 531.1 γ to (3/2 ⁻); J≤5/2 may disfavored by the fact that no transition to (1/2 ⁻) g.s. while there are transitions to (3/2 ⁻) 364 and (5/2 ⁻) 456 levels.		
1057.29 6	(3/2 ⁻ ,5/2 ⁻)	<8 ps	Α	J ^π : allowed β^- feeding (log <i>ft</i> =5.74 4) from (5/2 ⁻) parent; 1057.2γ to (1/2 ⁻).		
1088.80 5	(3/2 ⁻ ,5/2 ⁻)	<8 ps	Α	J ^π : allowed β^- feeding (log <i>ft</i> =4.88 3) from (5/2 ⁻) parent; 1088.6γ to (1/2 ⁻).		
1165.3 <mark>&</mark> 7	$(13/2^+)^a$		I	7		
1228.19 <i>21</i>	(3/2,5/2,7/2) ^b		Α	J^{π} : additional argument: 772.6 γ to (5/2 ⁻).		
1366.62 6	(5/2 ⁻)	<8 ps	A	J ^π : allowed $β^-$ feeding (log <i>ft</i> =5.34 4) from (5/2 ⁻) parent; 1366.2γ to (1/2 ⁻), 757.2γ to (7/2 ⁺).		
1372.35 11	$(3/2^+, 5/2, 7/2)^b$		Α	J ^π : additional arguments: 763.0γ to $(7/2^+)$; 811.6γ-560.8γ cascade to $(1/2^-)$.		
1449.1 4	$(1/2^+, 3/2, 5/2^-)^{b}$		Α	J^{π} : additional argument: 1449.1 γ to (1/2 ⁻).		
1457.2 5	(3/2,5/2,7/2) ^b		Α	J^{π} : additional argument: 1001.6 γ to (5/2 ⁻).		
1472.0 6	$(1/2, 3/2, 5/2^{-})$		Α	J^{π} : 1472.0 γ to (1/2 ⁻).		
1530.0 5			Α			
1558.86 7	$(3/2^{-}, 5/2^{-})$		A	J^{π} : allowed β^{-} feeding (log <i>ft</i> =5.71 4) from (5/2 ⁻); 1559.4 γ to (1/2 ⁻).		
1693.67 <i>10</i>	(1/2, 5/2, 5/2) $(3/2^-, 5/2^-)$		A A	J^{-1} : 1472.09 to (1/2). J^{π} : possibly allowed β^{-} feeding (log <i>ft</i> =5.93 5) from (5/2 ⁻); 1693.79 to (1/2 ⁻)		
1732.51 15	(5/2 ⁻)		A	$(1/2^{-})$. J ^{π} : possibly allowed β^{-} feeding (log <i>ft</i> =5.92 5) from (5/2 ⁻); 1732.5 γ to (1/2 ⁻), 837.8 γ to (7/2 ⁻), 1123.0 γ to (7/2 ⁺).		
1853.34 16	(3/2 ⁻ ,5/2,7/2)		Α	J^{π} : β^{-} feeding (log <i>ft</i> =6.0 <i>I</i>) from (5/2 ⁻); 958.5 γ to (7/2 ⁻).		
2001.93 16	$(3/2^+, 5/2, 7/2)$		Α	J^{π} : β^{-} feeding (log <i>ft</i> =6.2 <i>I</i>) from (5/2 ⁻); 1392.4 γ to (7/2 ⁺).		
2283.5 ^{&} 12	$(17/2^+)^a$		F			
2301.3 8	$(1/2,3/2,5/2^{-})$		A	J^{π} : 2301.3 γ to (1/2 ⁻).		
2341.5 /	(1/2, 3/2, 5/2)		A	$J^{*}: 2341.4\gamma$ to (1/2).		
2520.18 41	$(1/2^+ \text{ to } 7/2)^{\circ}$		A	J^{π} : additional argument: 1951.1 γ to (3/2,5/2 ⁻).		
2639.0 8	(1/2, 3/2, 3/2)		A	$J^{**} = 2038.9\gamma \ 10 \ (1/2).$		
2090.5 8	$(1/2^+, 3/2, 5/2^-)^b$		A	J ^{**} : additional argument: 2690.4 γ to (1/2).		
2780.3 8	$(1/2^+, 3/2, 5/2^-)^{b}$		A	J^{n} : additional argument: 2780.2 γ to (1/2 ⁻).		
2839.9 8	$(1/2^+, 3/2, 5/2^-)^{o}$		Α	J [*] : additional argument: 2839.8γ to $(1/2^{-})$.		
2898.5 8	$(1/2^+ \text{ to } 7/2^-)^{o}$		Α	J^{π} : additional argument: 2534.8 γ to (3/2 ⁻).		
2932.48 41	(3/2, 5/2, 7/2)		A	J ⁿ : β teeding (log $ft=6.2$ I) from (5/2 ⁻) parent.		
3013.3 3 3245 1 7	(3/2,3/2) (3/2,5/2,7/2)		A A	$J : p$ recaining (log $f_{I}=0.1 \ I$) from (5/2) parent; 5015.1γ to (1/2). $I^{\pi}: \beta^{-1}$ feeding (log $f_{I}=6.3 \pm 2-I$) from (5/2) parent		
3275.17	(1/2+3/2,7/2)		л л	$J = p$ recting (log $j_1 = 0.5 \pm 2^{-1}$) from $(J/2)$ patent.		
5500.19	$(1/2, 3/2, 3/2)^{-1}$		n	J . additional argument. 3300.07 to $(1/2)$.		

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁶⁵Fe Levels (continued)

E(level) ^{†‡}	\mathbf{J}^{π}	XREF	Comments
3374.0 8	$(1/2^+, 3/2, 5/2^-)^b$	A	J^{π} : additional argument: 3373.9 γ to (1/2 ⁻).
3399.3 5	$(1/2^+ \text{ to } 7/2^-)^{b}$	Α	J^{π} : additional argument: 3335.6 γ to (3/2 ⁻).
3421.0 9	$(1/2^+, 3/2, 5/2^-)^b$	A	J^{π} : additional argument: 3420.9 γ to (1/2 ⁻).
4095.84 41	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	Α	J^{π} : possibly allowed β^{-} feeding (log <i>ft</i> =5.9 <i>I</i>) from (5/2 ⁻).
4438.4 9	$(3/2, 5/2^{-})$	Α	J^{π} : β^{-} feeding (log <i>ft</i> =6.0 2) from (5/2 ⁻) parent; 4438.2 γ to (1/2 ⁻).

[†] Additional information 3.

⁴ From a least-squares fit to γ -ray energies. 796.9 γ from 1367 level was not included in the fit due to its poor energy agreement. [#] From $\beta\gamma(t)$ and $\beta\gamma\gamma(t)$ in ⁶⁵Mn β^- decay, unless otherwise noted. [@] Assignments from systematics in other odd-A iron isotopes and shell-model predictions in (⁷⁶Fe,X) (2008B105).

[&] Band(A): Band based on $(9/2^+)$ state.

^{*a*} Proposed in 2007Lu13 in (⁶⁴Ni,X γ) based on shell-model predictions and band assignment.

^b Weak β^- feeding from (5/2⁻) parent (up to 1st forbidden-unique is possible based on calculated log ft values) allows $J^{\pi} = (1/2^+, 3/2, 5/2, 7/2, 9/2^+);$ additional arguments to further constrain the J^{π} assignments are given under comments at each level.

$\gamma(^{65}\text{Fe})$

Additional information 4.

4

E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	Ι _γ ‡	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
363.62	(3/2 ⁻)	363.7 1	100	0.0	(1/2 ⁻)	[M1,E2]	0.0027 13	$\alpha(K)=0.0024 \ II; \ \alpha(L)=2.3\times10^{-4} \ II; \ \alpha(M)=3.2\times10^{-5} \ I5$ $\alpha(N)=1.4\times10^{-6} \ 7$
393.64	(9/2+)	(393.7)		0.0	(1/2 ⁻)	[M4]	0.0521 7	E _γ : also from ⁶⁶ Mn β ⁻ n decay. Other: 363.3 5 from (⁸⁶ Kr,Xγ). B(M1)(W.u.)=0.00492 <i>I6</i> if M1, B(E2)(W.u.)=61.4 +2 <i>I</i> - <i>I9</i> if E2. α (K)=0.0463 6; α (L)=0.00505 7; α (M)=0.00697 <i>I0</i> α (N)=2.98×10 ⁻⁵ 4 E. L: 393 7α with implied M4 multipolarity is not seen in 2013O106 in
								65 Mn β^- decay; an upper limit of intensity established by 2013O106 in 65 Mn β^- decay; an upper limit of intensity established by 2013O106 as <0.15 relative to 100 for 363.7 γ . The unrealistically large B(M4)(W.u)=1.87×10 ⁵ +30-22 (RUL=30) indicates the non-existence of this transition.
397.56	$(5/2^+)$	33.9 2	100 26	363.62	(3/2 ⁻)	[E1]	1.127 25	α (K)=1.014 23; α (L)=0.0994 23; α (M)=0.01343 30 α (N)=0.000542 12
								$B(E1)(W.u.)=1.180\times10^{-5}+66-26$
								E_{γ} : other: 33.5 5 from (⁸⁶ Kr,X γ).
								I_{γ} : γ intensity deduced by the evaluator based on measured total intensity=4 <i>I</i> from time-delayed component of the 363.7γ relative to I(363.7γ)=100 in ⁶⁵ Mn β ⁻ decay (2013Ol06) and total conversion coefficient.
		(397.6)	<8	0.0	$(1/2^{-})$	[M2]	0.00417 6	$\alpha(K)=0.003745; \alpha(L)=0.0003705; \alpha(M)=5.10\times10^{-5}7$
								$\alpha(N)=2.325\times10^{-6}\ 33$
								B(M2)(W.u.) < 0.023
								$E_{\gamma,l_{\gamma}}$: 397.07 with implied M2 multipolarity is not seen in 20130106 in 65 Mn β^{-} decay; an upper limit of intensity established by 20130106 as <0.15 relative to 100 for 363.7 γ .
455.59	$(5/2^{-})$	92.0 1	3.3 4	363.62	$(3/2^{-})$	[M1]	0.0439 6	$\alpha(K)=0.0394$ 6; $\alpha(L)=0.00391$ 6; $\alpha(M)=0.000539$ 8
								$\alpha(N)=2.428\times10^{-5}$ 35
		155 6 1	100.0	0.0	$(1/2^{-})$	(E2)	1.84×10-3.2	B(M1)(W.u.)=0.00257 + 39 - 36 $a(W)=0.001652, 23; a(U)=0.0001600, 23; a(M)=2.100\times10^{-5}, 21$
		433.0 1	100 8	0.0	(1/2)	[E2]	1.84×10 5	$\alpha(\mathbf{K})=0.001052\ 25;\ \alpha(\mathbf{L})=0.0001000\ 22;\ \alpha(\mathbf{M})=2.199\times 10^{-5}\ 51$ $\alpha(\mathbf{N})=9.93\times 10^{-7}\ 14$ $\mathbf{B}(\mathbf{E}2)(\mathbf{W},\mathbf{u},\mathbf{u})=5.13\ 15$
								E_{γ} : other: 455.8 2 from ⁶⁶ Mn β^{-} n decay.
560.74	(3/2,5/2 ⁻)	163.1 <i>1</i> 197.6 <i>3</i>	26 <i>4</i> 52 <i>4</i>	397.56 363.62	(5/2 ⁺) (3/2 ⁻)	[D] [D]		E_{γ} , I_{γ} : other: 162.7 3 with I_{γ} =27 6 from ⁶⁶ Mn β^{-} n decay.
		560.8 <i>1</i>	100 8	0.0	(1/2 ⁻)	[D,E2]		E_{γ} , I_{γ} : other: 560.7 2 with I_{γ} =100 14 from ⁶⁶ Mn β ⁻ n decay. B(E2)(W.u.)=0.947 +87-82 if E2.

Adopted Levels, Gammas (continued)

$\gamma(^{65}\text{Fe})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
569.05	(3/2,5/2 ⁻)	205.3 2 569.1 <i>1</i>	3.6 <i>12</i> 100 7	363.62 0.0	$(3/2^{-})$ $(1/2^{-})$	[D,E2] [D,E2]		B(E2)(W.u.)>182 if E2. B(E2)(W.u.)>48 if E2.
609.45	$(7/2^+)$	215.8 <i>I</i>	100	393.64	$(9/2^+)$			
683.26	(3/2,5/2 ⁻)	114.5 3	4.6 23	569.05	(3/2,5/2 ⁻)	[M1,E1]		B(M1)(W.u.)= $0.012 + 13-6$ if M1, B(E1)(W.u.)= 2.2×10^{-4} + $24-12$ if E1.
		227.7 1	57 5	455.59	(5/2 ⁻)	[M1,E1]		B(M1)(W.u.)= $0.018 + 16-7$ if M1, B(E1)(W.u.)= 3.5×10^{-4} + $30-12$ if E1.
		319.7 <i>1</i>	100 7	363.62	(3/2 ⁻)	[M1,E1]		B(M1)(W.u.)= $0.0115 + 97 - 39$ if M1, B(E1)(W.u.)= $2.2 \times 10^{-4} + 19 - 8$ if E1.
		683 3 [@] 1	$82^{@}$ 7	0.0	$(1/2^{-})$	[D E2]		$B(E^2)(W_{11}) = 34 + 29 - 12$ if E2
894.72	(7/2 ⁻)	439.2 1	100 9	455.59	$(5/2^{-})$	[D,E2] [M1,E2]	0.0015 6	$\alpha(\text{K})=0.0013 \ 5; \ \alpha(\text{L})=1.3\times10^{-4} \ 5; \ \alpha(\text{M})=1.8\times10^{-5} \ 7 \ \alpha(\text{N})=8.1\times10^{-7} \ 31 \ \text{B(M)}(\text{W}\text{u})>60 \ \text{if } \text{F2}$
		531.1 <i>1</i>	31.4 29	363.62	(3/2 ⁻)	[E2]	1.12×10 ⁻³ 2	$\alpha(\text{K})=0.001013 \ 14; \ \alpha(\text{L})=9.77\times10^{-5} \ 14; \ \alpha(\text{M})=1.344\times10^{-5}$ 19
								$\alpha(N)=6.10\times10^{-7} \ 9$ B(E2)(W.u.)>6.6
1057.29	$(3/2^-, 5/2^-)$	374.1 <i>1</i>	46 5	683.26	$(3/2, 5/2^{-})$	[D,E2]		B(E2)(W.u.) > 88 if E2.
		488.3 2	95	569.05	$(3/2, 5/2^{-})$	[D,E2]		B(E2)(W.u.)>2.3 if E2.
		601.7 <i>1</i>	41 5	455.59	(5/2 ⁻)	[M1,E2]	6.1×10 ⁻⁴ 16	$\alpha(K)=5.5\times10^{-4}$ 14; $\alpha(L)=5.3\times10^{-5}$ 14; $\alpha(M)=7.3\times10^{-6}$ 19 $\alpha(N)=3.3\times10^{-7}$ 9 B(M1)(W µ)>0.0016 if M1_B(F2)(W µ)>7.2 if F2
		659.7 1	36 5	397.56	(5/2+)	[E1]	0.0002038 29	$\alpha(K) = 0.0001838\ 26;\ \alpha(L) = 1.747 \times 10^{-5}\ 24; \\ \alpha(M) = 2.404 \times 10^{-6}\ 34 \\ \alpha(N) = 1.111 \times 10^{-7}\ 16 $
								$B(E1)(W.u.)>2.0\times10^{-3}$
		693.7 1	100 9	363.62	(3/2 ⁻)	[M1,E2]	0.00042 9	$\alpha(K)=0.00038 \ 8; \ \alpha(L)=3.6\times10^{-5} \ 8; \ \alpha(M)=5.0\times10^{-6} \ 11 \ \alpha(N)=2.3\times10^{-7} \ 5$
								B(M1)(W.u.)>0.0027 if M1, B(E2)(W.u.)>9.2 if E2.
		1057.2 1	32 5	0.0	$(1/2^{-})$	[M1,E2]	0.000156 16	$\alpha(K)=0.000140 \ 14; \ \alpha(L)=1.34\times10^{-5} \ 14; \ \alpha(M)=1.84\times10^{-6} \ 19 \ \alpha(N)=8.5\times10^{-8} \ 8$
								B(M1)(W.u.)>2.2×10 ⁻⁴ if M1, B(E2)(W.u.)>0.32 if E2.
1088.80	$(3/2^-, 5/2^-)$	405.6 1	10.7 6	683.26	$(3/2, 5/2^{-})$	[D,E2]		B(E2)(W.u.)>19 if E2.
		519.8 <i>1</i>	25.4 18	569.05	$(3/2, 5/2^{-})$	[D,E2]		B(E2)(W.u.)>13 if E2.
		528.1 <i>1</i>	5.3 6	560.74	$(3/2, 5/2^{-})$	[D,E2]		B(E2)(W.u.)>2.3 if E2.
		633.2 1	13.0 12	455.59	(5/2 ⁻)	[M1,E2]	0.00053 13	$\alpha(K)=0.00048$ 12; $\alpha(L)=4.6\times10^{-5}$ 11; $\alpha(M)=6.3\times10^{-6}$ 16 $\alpha(N)=2.9\times10^{-7}$ 7
								B(M1)(W.u.)>5.7×10 ⁻⁴ if M1, B(E2)(W.u.)>2.4 if E2.
		691.5 5	<2.4	397.56	$(5/2^+)$	[E1]	0.0001831 26	α (K)=0.0001652 23; α (L)=1.570×10 ⁻⁵ 22;

S

 $^{65}_{26}{
m Fe}_{39}$ -5

Adopted Levels, Gammas (continued)											
$\gamma(^{65}\text{Fe})$ (continued)											
E _i (level)	\mathbf{J}_i^{π}	E_{γ} ‡	I_{γ}^{\ddagger}	\mathbf{E}_{f}	J_f^{π}	Mult.	α^{\dagger}	Comments			
								$\alpha(M)=2.160\times10^{-6} 30$ $\alpha(N)=9.99\times10^{-8} 14$			
1088.80	(3/2 ⁻ ,5/2 ⁻)	725.2 1	52 4	363.62	(3/2 ⁻)	[M1,E2]	0.00038 7	$\alpha(K)=0.00034$ 7; $\alpha(L)=3.2\times10^{-5}$ 6; $\alpha(M)=4.5\times10^{-6}$ 9 $\alpha(N)=2.1\times10^{-7}$ 4 $B(M1)(W_{11})>0.0016$ if M1 $B(E2)(W_{11})>5.0$ if E2			
		1088.6 <i>1</i>	100 8	0.0	(1/2 ⁻)	[M1,E2]	0.000146 14	$\alpha(\text{K})=0.000132 \ l2; \ \alpha(\text{L})=1.25\times10^{-5} \ l2; \ \alpha(\text{M})=1.73\times10^{-6} \ l7 \ \alpha(\text{M})=8.0\times10^{-8} \ 7 \ \alpha(\text{M})=1.73\times10^{-6} \ \alpha($			
								$\alpha(N)=8.0\times10^{-7}$ B(M1)(W.u.)>9.4×10 ⁻⁴ if M1, B(E2)(W.u.)>1.3 if E2.			
1165.3 1228-10	$(13/2^+)$ (3/2,5/2,7/2)	771.6 [#] 7	100	393.64 455.59	$(9/2^+)$ $(5/2^-)$						
1366.62	$(5/2^{-})$	472.0 1	18.8 <i>21</i>	894.72	$(7/2^{-})$	[M1,E2]	0.0012 4	$\alpha(K)=0.0011 4; \alpha(L)=1.0\times10^{-4} 4; \alpha(M)=1.4\times10^{-5} 5$ $\alpha(N)=6.5\times10^{-7} 23$			
		683 3 [@] 1	51 [@] 1	683.26	$(3/2 5/2^{-})$	[D F2]		B(M1)(W.u.)>0.0018 if M1, $B(E2)(W.u.)>13$ if E2. B(E2)(W.u.)>6.3 if E2			
		757.2 2	4.2 21	609.45	$(7/2^+)$	[D,E2] [E1]	0.0001499 21	$\begin{aligned} \alpha(\mathbf{K}) &= 0.0001352 \ I9; \ \alpha(\mathbf{L}) &= 1.284 \times 10^{-5} \ I8; \\ \alpha(\mathbf{M}) &= 1.768 \times 10^{-6} \ 25 \\ \alpha(\mathbf{N}) &= 8.19 \times 10^{-8} \ II \end{aligned}$			
		796.9 <i>1</i>	10.4 21	569.05	(3/2,5/2 ⁻)	[D,E2]		B(E1)(W.u.)>1.0×10 ⁻⁶ E _y : poor fit, level-energy difference=797.57. $B(E_2)(W_{W_1}) > 0.48$ if E2			
		805.9 2	6.3 21	560.74	$(3/2, 5/2^{-})$	[D,E2]		B(E2)(W.u.)>0.46 if E2. B(E2)(W.u.)>0.23 if E2.			
		911.1 2	6.3 21	455.59	(5/2 ⁻)	[M1,E2]	0.000217 29	$\alpha(K)=0.000196\ 26;\ \alpha(L)=1.87\times10^{-5}\ 25;\ \alpha(M)=2.57\times10^{-6}\ 34$			
								$\alpha(N) = 1.19 \times 10^{-7} \ 15$			
		969.1 <i>1</i>	16.7 <i>21</i>	397.56	(5/2+)	[E1]	9.02×10 ⁻⁵ 13	B(M1)(W.u.)>6.2×10 ⁻⁵ if M1, B(E2)(W.u.)>0.12 if E2. α (K)=8.14×10 ⁻⁵ 11; α (L)=7.72×10 ⁻⁶ 11; α (M)=1.063×10 ⁻⁶ 15 (N) 4.02×10^{-8} 7			
								$\alpha(N) = 4.93 \times 10^{-6}$ B(E1)(W.u.)>3.4×10 ⁻⁶			
		1002.9 1	100 8	363.62	(3/2 ⁻)	[M1,E2]	0.000175 19	α (K)=0.000158 <i>17</i> ; α (L)=1.50×10 ⁻⁵ <i>17</i> ; α (M)=2.07×10 ⁻⁶ 23			
		1366.2 4	6.3 21	0.0	(1/2 ⁻)	[E2]	0.0001415 20	$\alpha(N)=9.6\times10^{-8} \ 10$ B(M1)(W.u.)>0.0011 if M1, B(E2)(W.u.)>1.8 if E2. $\alpha(K)=8.72\times10^{-5} \ 12; \ \alpha(L)=8.28\times10^{-6} \ 12; \ \alpha(M)=1.141\times10^{-6} \ 16$			
								$\alpha(N)=5.30\times10^{-6}$ 7; $\alpha(IPF)=4.49\times10^{-3}$ 6 B(E2)(W.u.)>0.016			

6

From ENSDF

$\gamma(^{65}\text{Fe})$ (continued)

E_i (level)	\mathbf{J}_i^{π}	E _γ ‡	Iγ‡	\mathbf{E}_{f}	${ m J}_f^\pi$
1372.35	$(3/2^+, 5/2, 7/2)$	763.0 3	67 33	609.45	$(7/2^+)$
		811.6 <i>1</i>	100 33	560.74	$(3/2, 5/2^{-})$
1449.1	$(1/2^+, 3/2, 5/2^-)$	1449.1 <i>4</i>	100	0.0	$(1/2^{-})$
1457.2	(3/2,5/2,7/2)	1001.6 5	100	455.59	$(5/2^{-})$
1472.0	$(1/2, 3/2, 5/2^{-})$	1472.0 6	100	0.0	$(1/2^{-})$
1530.0		1132.4 5	100	397.56	$(5/2^+)$
1558.86	$(3/2^{-}, 5/2^{-})$	875.7 1	57 7	683.26	$(3/2, 5/2^{-})$
		989.7 <i>1</i>	50 7	569.05	$(3/2, 5/2^{-})$
		1103.2 <i>1</i>	100 7	455.59	$(5/2^{-})$
		1161.5 3	36 7	397.56	$(5/2^+)$
		1195.2 2	43 7	363.62	$(3/2^{-})$
		1559.4 <i>4</i>	77	0.0	$(1/2^{-})$
1674.2	$(1/2, 3/2, 5/2^{-})$	1674.2 7	100	0.0	$(1/2^{-})$
1693.67	$(3/2^{-}, 5/2^{-})$	1124.6 5	178	569.05	$(3/2, 5/2^{-})$
		1296.2 2	50 8	397.56	$(5/2^+)$
		1330.0 <i>1</i>	100 8	363.62	$(3/2^{-})$
		1693.7 4	25 8	0.0	$(1/2^{-})$
1732.51	$(5/2^{-})$	837.6 5	100 17	894.72	$(7/2^{-})$
		1123.0 2	100 17	609.45	$(7/2^+)$
		1163.6 3	33 17	569.05	$(3/2, 5/2^{-})$
		1368.9 3	100 17	363.62	$(3/2^{-})$
1050.04		1732.5 4	50 17	0.0	$(1/2^{-})$
1853.34	(3/2, 5/2, 7/2)	796.4 4	100 22	1057.29	(3/2,5/2)
		958.5 2	100 11	894.72	$(1/2^{-})$
2001.02		1397.8 3	22 11	455.59	$(5/2^{-})$
2001.93	$(3/2^+, 5/2, 7/2)$	1318.7 2	100 17	683.26	(3/2, 5/2)
		1392.4 4	33 17	609.45	$(1/2^{+})$
		1432.8 3	50 17	569.05	(3/2,5/2)
2283.5	$(17/2^+)$	1118.2 [#] 10	100	1165.3	$(13/2^+)$
2301.3	$(1/2, 3/2, 5/2^{-})$	2301.3 8	100	0.0	$(1/2^{-})$
2341.5	$(1/2, 3/2, 5/2^{-})$	2341.4 7	100	0.0	$(1/2^{-})$
2520.18	$(1/2^+ \text{ to } 7/2)$	1951.1 4	100	569.05	$(3/2, 5/2^{-})$
2639.0	$(1/2,3/2,5/2^{-})$	2638.9 8	100	0.0	$(1/2^{-})$
2690.5	$(1/2^+, 3/2, 5/2^-)$	2690.4 8	100	0.0	$(1/2^{-})$
2780.3	$(1/2^+, 3/2, 5/2^-)$	2780.2.8	100	0.0	$(1/2^{-})$
2839.9	$(1/2^+, 3/2, 5/2^-)$	2839.8 8	100	0.0	$(1/2^{-})$
2898.5	$(1/2^{+} \text{ to } 7/2^{-})$	2534.8 8	100	363.62	$(3/2^{-})$
2932.48	(3/2, 5/2, 7/2)	23/1.7 4	100	560.74	$(3/2, 5/2^{-})$
3013.5	$(3/2, 5/2^{-})$	2444.8 7	60 20	569.05	$(3/2, 5/2^{-})$
2245 1		3013.1 6	100/20	0.0	(1/2)
3245.1	(3/2, 5/2, 7/2)	2561.8 7	100	683.26	$(3/2, 5/2^{-})$

7

$\gamma(^{65}\text{Fe})$ (continued)

E _i (level)	\mathbf{J}_i^{π}	E _γ ‡	I_{γ}^{\ddagger}	E_f	J_f^{π}
3306.1	$(1/2^+, 3/2, 5/2^-)$	3306.0 9	100	0.0	(1/2 ⁻)
3374.0	$(1/2^+, 3/2, 5/2^-)$	3373.9 8	100	0.0	$(1/2^{-})$
3399.3	$(1/2^+ \text{ to } 7/2^-)$	3035.6 5	100	363.62	$(3/2^{-})$
3421.0	$(1/2^+, 3/2, 5/2^-)$	3420.9 9	100	0.0	$(1/2^{-})$
4095.84	$(3/2^{-}, 5/2^{-}, 7/2^{-})$	3535.0 4	100	560.74	$(3/2, 5/2^{-})$
4438.4	$(3/2, 5/2^{-})$	4438.2 9	100	0.0	$(1/2^{-})$

[†] Additional information 5.
[‡] From ⁶⁵Mn β⁻ decay (2013Ol06), unless otherwise noted.
[#] From ²³⁸U(⁶⁴Ni,Xγ) (2007Lu13).
[@] Multiply placed with intensity suitably divided.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

 $^{65}_{26}{\rm Fe}_{39}$

9

10

 ${}^{65}_{26}\mathrm{Fe}_{39}$ -10

From ENSDF

 ${}^{65}_{26}\mathrm{Fe}_{39}$ -10

Adopted Levels, Gammas

