⁵⁸Ni(⁸⁶Kr,Xγ) 2006DaZX,1999So20,1998Gr14

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 202,59 (2025)	25-Feb-2025

Adapted from the XUNDL dataset for 2007Lu13, compiled by S. Geraedts and B. Singh (McMaster), on September 3, 2007.

2006DaZX,2010Da06: E=60.5 MeV/nucleon ⁸⁶Kr beam was produced from the accelerator at GANIL. Target was natural Ni. Fragments were separated by the LISE spectrometer and selected ions were implanted into a three-element Si detector telescope surrounded by four HPGe detectors and a Low Energy Photon Spectrometer (LEPS). Measured E γ , $\gamma\gamma$ -coin, γ (t). Deduced levels, T_{1/2}, J, π . Comparisons with shell model calculations.

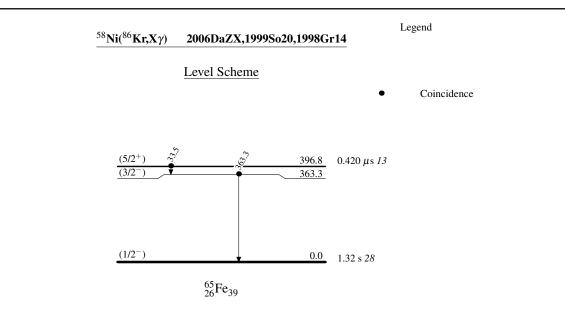
1999So20: E=60.4 MeV/nucleon ⁸⁶Kr beam was produced at GANIL. Target was 140– μ m-thick ⁵⁸Ni. Selected nuclei were implanted into 4 consecutive silicon detectors surrounded by four Ge detectors and a segmented LEPS clover detector. Measured E γ , $\beta\gamma$ -coin, implant- β (t). Deduced ⁶⁵Fe T_{1/2}.

1998Gr14: E=60.3 MeV/nucleon ⁸⁶Kr beam was produced at GANIL. Target was natural Ni. Selected nuclei were implanted into a detection system consisting of six planar silicon detectors surrounded by four HPGe detectors and a LEPS. Measured E γ , $\gamma\gamma$ -coin, γ (t). Deduced T_{1/2}.

⁶⁵Fe Levels

E(level) ^{†‡}	$J^{\pi \#}$	T _{1/2}	Comments
0.0	$(1/2^{-})$	1.32 s 28	J^{π} : other: (5/2 ⁻) from shell-model calculations in 2006DaZX.
			$T_{1/2}$: from implant- β (t) in 1999So20. The authors state that β -decaying isomer may be present even thought it was not observed. Note that a (9/2 ⁺) β -decaying isomer has been observed in later studies with a $T_{1/2}$ very close to this value. See Adopted Levels for the isomer.
363.3 5	(3/2 ⁻)		J^{π} : other: (1/2 ⁻) from shell-model calculations in 2006DaZX; (5/2 ⁻) is assigned by 1998Gr14 assuming the 363 γ is an isomeric transition, based on their assignment of the measured T _{1/2} =0.43 μ s 13 (from 363 γ (t)) to this level, however, this T _{1/2} is most likely for 397 level according to the observed 33.5 γ -363.3 γ -coin in 2006DaZX. Also see
			comments at 397 level.
396.8 7	$(5/2^+)$	0.420 µs 13	J^{π} : other: (1/2 ⁺) from shell-model calculations in 2006DaZX.
			T _{1/2} : from γ (t) in 1999So20. Other: 0.43 μ s <i>13</i> from γ (t) in 1998Gr14 is assigned to the 363 level by the authors, but 33.5 γ -363.3 γ -coin seen in 2006DaZX indicates that it should be for 397 level. This is also confirmed in ⁶⁵ Mn β^- decay (2013Ol06) and ⁶⁶ Mn β^- n decay (2018St18).

[†] Additional information 1.


[‡] From $E\gamma$ data.

[#] From Adopted Levels. Assignments proposed by 2006DaZX based on shell-model calculations are different and given under comments.

 $\gamma(^{65}\text{Fe})$

E_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Comments
33.5 5 363.3 5	396.8 363.3	$(5/2^+)$ $(3/2^-)$		(-)	2006DaZX state that this γ is seen in coincidence with 33.5 γ , delayed by a few ns.

[†] From 2006DaZX. Also quoted in 2010Da06.

