⁶⁵Ni β⁻ decay (2.5175 h) 1987Ju05,1990Lo03,1973Ra10

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 202,59 (2025)	25-Feb-2025

Parent: ⁶⁵Ni: E=0; J^{π}=5/2⁻; T_{1/2}=2.5175 h 5; Q(β ⁻)=2137.9 7; % β ⁻ decay=100

⁶⁵Ni-J^{π},T_{1/2}: From Adopted Levels.

⁶⁵Ni-Q(β^{-}): From 2021Wa16.

1987Ju05: ⁶⁵Ni source was produced from irradiation of enriched ⁶⁴Ni metal with thermal neutrons at Technabsexport, USSR. β particles were detected with a gas-flow proportional counter; γ rays were detected with two co-axial Ge detectors. Measured Eγ, Iγ, Iβ, β(t), 4πβγ-coin. Deduced parent T_{1/2}, relative γ-ray emission probabilities and absolute emission probabilities for 1482γ.
1973Ra10: ⁶⁵Ni source was from ⁶⁴Ni(n,γ). Measured Eγ, Iγ with a Ge(Li) detector. Deduced levels, β-decay branching ratios,

log ft.

1990Lo03: ⁶⁵Ni source was produced by ⁶⁵Ni(n, γ) with thermal neutrons from the CONSORT II reactor on an enriched ⁶⁴Ni target. β particles were detected with a beta detector and γ rays were detected with Ge(Li) detectors. Measured E γ , I γ , I β , $4\pi\beta\gamma$ -coin. Deduced relative and absolute γ -ray emission probabilies. Comparisons with available data.

1971Me14,1980RuZY: ⁶⁵Ni source was from ⁶⁴Ni(n, γ) at the NRU rabbit facility, Canada. Measured E γ , I γ , I β^- , $\beta(t)$, $4\pi\beta\gamma$ -coin. Deduced parent T_{1/2}, absolute emission probability of 1482 γ .

Additional information 1.

1972Pa30: ⁶⁵Ni source was from ⁶⁴Ni(n, γ) with neutrons from the the 5 MV reactor of DEMOCRITOS NRC. γ rays were detected with a Ge(Li) and a NaI(Tl) detector. Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced levels, β -decay branching ratios, absolute γ -ray emission probabilies based an known value of %I β (g.s.)=58.

1972Co31: ⁶⁵Ni source was from ⁶⁴Ni(n,γ) with thermal neutrons from the Brookhaven High Flux Beam Reactor (HFBR). γ rays were detected with Ge(Li) detectors. Measured E γ , I γ , $\gamma\gamma$ -coin. Deduced relative and absolute γ -ray emission probabilies, with the latter deduced by the authors based on an assumption of a combined yield of 45.5% for 366 γ , 1116 γ and 1482 γ .

1963Cl06: ⁶⁵Ni source was from ⁶⁴Ni(n, γ) with thermal neutrons from the Materials Testing Reactor of National Reactor Testing Station in Idaho. γ rays were detected with NaI(Tl) detectors; β particles were detected with a $4\pi \beta$ -flow proportional counter. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$, $4\pi\beta\gamma$ -coin, $\beta(t)$. Deduced parent T_{1/2}, relative and absolute γ -ray emission probabilies, with the latter determined by comparisons of relative γ -ray intensities with absolute disintegration from $4\beta\gamma$ -coin measurements.

1976Kr09: ⁶⁵Ni source was from ⁶⁴Ni(n,γ) with thermal neutrons from the Los Alamos Omega West Reactor. γ rays were detected with a Ge(Li) detector. Measured Eγ, Iγ, γ(θ). Deduced γ-ray multipolarties and mixing ratios.
1968Re04: measured ⁶⁵Ni T_{1/2} at ORNL.

1968At03,1969Be28: measured β - γ circular polarization correlations for 1116 γ at the Lawrence Radiation Laboratory, Livermore. 1977Ba64: ⁶⁵Ni T_{1/2} at JAERI.

1965Sp07: ⁶⁵Ni source was from irradiation of 99.98% purified metallic Ni with neutrons from the FiR-1 reactor at Otaniemi, Finland. γ rays were detected with NaI(Tl) and Ge(Li) detectors. Measured E γ , I γ , $\gamma\gamma$ -coin, $\gamma\gamma(\theta)$. Deduced levels, J, π , γ -ray multipolarities, mixing ratios, and absolute emission probabilies by assuming %I β (g.s.)=57 taken from 1949Si21.

1964Fr04: measured E γ , I γ , E β^- , I β^- with a magnetic spectrometer for β particles and a NaI for γ rays at the Nuclear Research Institute, Czechosl. Acad. Sci., Rez. Deduced absolute γ -ray emission probabilies by comparison of γ -ray intensities with measured total number of decays.

1960Ja16: measured E γ , I γ , $\gamma\gamma(\theta)$ using NaI(Tl) detectors at the Atomic Energy Establishment, India. Deduced levels, J, π , γ -ray multipolarities, and absolute γ -ray emission probabilities based on %I β (g.s.)=57 taken from 1949Si21.

1960Ri06: measured E γ , I γ , γ (t) with a NaI(Tl) detector at the Instituut voor Kernphysisch Onderzoek in Amsterdam. Deduced parent T_{1/2}, relative γ -ray emission probabilities.

Others: 1949Si21, 1958Ha11, 1962Ba27, 1964Ma05, 1972RaZN.

The decay scheme is considered fairly complete by the evaluator.

⁶⁵Cu Levels

E(level) ^{†‡}	J π #	T _{1/2} #	Comments
0	3/2-		
770.63 13	$1/2^{-}$	101 fs 6	
1115.55 3	5/2-	0.285 ps 11	J^{π} : 5/2 ⁻ from $\beta\gamma$ (CP) in 1969Be28; spin=5/2 from $\gamma\gamma(\theta)$ in 1960Ja16, 1963Cl06, 1965Sp07.

Continued on next page (footnotes at end of table)

$^{65}\mathrm{Ni}\,\beta^-$ decay (2.5175 h) 1987Ju05,1990Lo03,1973Ra10 (continued)

⁶⁵Cu Levels (continued)

E(level) ^{†‡}	$J^{\pi #}$	$T_{1/2}^{\#}$	Comments
1481.83 <i>4</i>	7/2 ⁻	0.45 ps +11-9	J^{π} : spin=7/2 from γγ(θ) in 1960Ja16, 1965Sp07.
1623.44 <i>5</i>	5/2 ⁻	0.86 ps +31-20	J^{π} : spin=3/2,5/2 from γγ(θ) in 1965Sp07.
1724.98 <i>5</i>	3/2 ⁻	77 fs +17-13	J^{π} : spin=5/2 from γγ(θ) in 1965Sp07 is inconsistent.

[†] Additional information 2.
[‡] From a least-squares fit to γ-ray energies.
[#] From Adopted Levels. Supporting arguments for J^π from this dataset are given under comments where available.

β^{-} radiations

av E β : Additional information 3.

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(412.9 12)	1724.98	0.546 8	5.93 1	av E β =128.06 25
(514.5 12)	1623.44	0.854 10	6.06 1	av $E\beta = 165.51\ 26$
(656.1 12)	1481.83	28.36 17	4.919 5	av $E\beta = 220.22\ 28$
				E(decay): measured value: 650 30 from 1964Fr04 with $\%$ I β =30 5.
(1022.4 12)	1115.55	10.32 9	6.072 5	av $E\beta = 371.26 \ 30$
				E(decay): measured value: 1020 25 from 1964Fr04 with $\%$ I β =11 3.
(2137.9 16)	0	59.19 <i>19</i>	6.595 2	av $E\beta = 874.03 \ 33$
				E(decay): measured value: 2140 10 from 1964Fr04 with $\%$ I β =58 5.
				I β^- : from 100– Σ %I(β to excited level). Other: 58 5 from measured β intensity
				compared to the measured total number of decays (1964Fr04).

 † From $\gamma \text{+ce}$ intensity imbalance at each level for excited levels.

[‡] Absolute intensity per 100 decays.

$\gamma(^{65}Cu)$

I γ normalization: From absolute %I γ (1482)=23.59 *14*, determined using 4 $\pi\beta\gamma$ -coin (1987Ju05). Other: 21.95 *28* (1990Lo03), 23.5 *8* (1971Me14), 25.0 *20* (1963Cl06), 24 (1964Fr04). Note that the value in 1990Lo03 is lower than values from other studies. 1990Lo03 mention this discrepancy but state that it cannot be resolved in their work. The evaluator has adopted the value from 1987Ju05 which agrees with most of other studies.

E_{γ}^{\ddagger}	$I_{\gamma}^{\#a}$	E_i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	J_f^{π} Mult. [@]	$\delta^{@\&}$	α^{\dagger}	Comments
344.9 ^b	0.0040 4	1115.55	5/2-	770.63 1	/2-			$\%$ I γ =9.4×10 ⁻⁴ 10 E. L.: tentatively placed in 1973Ba10 only
366.27 3	20.15 15	1481.83	7/2-	1115.55 5	/2 ⁻ M1+E2	-0.03 1	2.02×10 ⁻³ 3	% $I\gamma$ =4.75 5 α (K)=0.001810 25; α (L)=0.0001812 25; α (M)=2.55×10 ⁻⁵ 4
								α (N)=7.74×10 ⁻⁷ <i>11</i> E _y : others: 366.3 <i>1</i> (1972Pa30), 366.4 <i>3</i> (1972Co31), 365 <i>5</i>
								(1963Cl06), 366 <i>1</i> (1965Sp07), 370 <i>5</i> (1964Fr04). I _v : weighted average of 20.37 22 (1987Ju05), 20.15 <i>14</i>
								(1990Lo03), 20.2 6 (1973Ra10), 18.6 8 (1972Pa30), 18 <i>I</i> (1963Cl06), 21 2 (1960Ri06), 12 5 with Ge(Li) and 17 5 with NaI(Tl) (1965Sp07), 19 3 (1972Co31). Others: 19 (1960Ia16), 19 (1964Fr04).
								δ : value from this dataset: -0.033 30 from measured $γ(θ)$ anisotropy from oriented nuclei (1976Kr09).
								Additional information 4. $366\gamma-1116\gamma(\theta)$: A ₂ =+0.189 5, A ₄ =+0.013 8 (1963Cl06);
507.9 <i>1</i>	1.216 10	1623.44	5/2-	1115.55 5	/2 ⁻ M1+E2	+0.20 3	0.000980 17	$A_2 = +0.172 \ 6, \ A_4 = +0.013 \ 10 \ (1965 \text{Sp07}).$ % $I\gamma = 0.2869 \ 29$
								$\alpha(K)=0.000880 \ 15; \ \alpha(L)=8.76\times10^{-5} \ 15; \ \alpha(M)=1.232\times10^{-5} \ 21$
								$\alpha(N)=3.75\times10^{-7}$ 6
								E_{γ} : from 1972Pa30. Others: 507.8 2 (1973Ra10), 507.8 6 (1972Co31), 509 7 (1963Cl06), 508 10 (1965Sp07), 510 5 (1964Fr04).
								I _γ : weighted average of 1.240 <i>19</i> (1987Ju05), 1.21 <i>1</i> (1990Lo03), 1.28 <i>8</i> (1973Ra10), 1.15 <i>5</i> (1972Pa30), 1.5 <i>2</i> (1963Cl06), 1.9 <i>5</i> with NaI(Tl) (1965Sp07), 1.1 <i>3</i>
								(1972Co31). Others: 0.5 (1960Ja16), 1.5 (1964Fr04). 507 γ -1116 $\gamma(\theta)$; A ₂ =-0.200 35, A ₄ =-0.013 57 (1965Sp07).
								δ : -2.8 2 or +0.20 3 reported in 1976Kr09, from re-analysis of $\gamma\gamma(\theta)$ data of 1965Sp07. $\gamma(\theta)$ anisotropy from 1976Kr09 favors +0.20 3, which is adopted in Adopted Gammas.
609.5 1	0.674 21	1724.98	3/2-	1115.55 5	/2 ⁻ [M1+E2]	< 0.5	0.00067 4	%Iy=0.159 5

 $\boldsymbol{\omega}$

 $^{65}_{29}Cu_{36}$ -3

				65 j	Ni β^- d	ecay (2.517	75 h) 198 7	7Ju05,1990Lo03,	,1973Ra10 (continued)
γ ⁽⁶⁵ Cu) (continued)									
${\rm E}_{\gamma}^{\ddagger}$	$I_{\gamma}^{\#a}$	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_f^{π}	Mult.@	δ ^{@&}	$lpha^\dagger$	Comments
									$\begin{aligned} \alpha(\mathrm{K}) = 0.000602 \ 33; \ \alpha(\mathrm{L}) = 5.98 \times 10^{-5} \ 34; \ \alpha(\mathrm{M}) = 8.4 \times 10^{-6} \ 5 \\ \alpha(\mathrm{N}) = 2.56 \times 10^{-7} \ 14 \\ \mathrm{E}_{\gamma}: \ 1972\mathrm{Pa30.} \ \text{Others:} \ 609.3 \ 2 \ (1973\mathrm{Ra10}), \ 609.8 \ 5 \ (1972\mathrm{Co31}), \\ 611 \ 7 \ (1963\mathrm{Cl06}), \ 608 \ 10 \ (1965\mathrm{Sp07}), \ 610 \ 5 \ (1964\mathrm{Fr04}). \\ \mathrm{I}_{\gamma}: \ \text{weighted average of} \ 0.655 \ 17 \ (1987\mathrm{Ju05}), \ 0.73 \ 2 \ (1990\mathrm{Lo03}), \\ 0.624 \ 36 \ (1973\mathrm{Ra10}), \ 0.57 \ 5 \ (1972\mathrm{Pa30}), \ 1.0 \ 2 \ (1963\mathrm{Cl06}), \ 0.6 \ 3 \\ \text{with NaI(TI)} \ (1965\mathrm{Sp07}), \ 0.6 \ 2 \ (1972\mathrm{Co31}). \ \text{Others:} \ 0.2 \\ (1960\mathrm{Ja16}), \ 0.9 \ (1964\mathrm{Fr04}). \\ 610\gamma - 1116\gamma(\theta): \ \mathrm{A}_2 = 0.209 \ 69, \ \mathrm{A}_4 = -0.160 \ 111 \ (1965\mathrm{Sp07}). \\ \mathrm{Additional information} \ 5. \end{aligned}$
710 ⁰ 10	< 0.024	1481.83	7/2-	770.63	$1/2^{-}$				$\%$ I γ <0.0057 F J : from 1963C106 only
770.6 2	0.395 16	770.63	1/2-	0	3/2-	M1+E2	0.099 6	0.000384 5	$%_{I\gamma=0.093} 4$ $\alpha(K)=0.000345 5; \alpha(L)=3.41\times10^{-5} 5; \alpha(M)=4.80\times10^{-6} 7$ $\alpha(N)=1.470\times10^{-7} 21$ $E_{\gamma}: \text{ others: } 770.7 3 (1972Pa30), 771.0 10 (1972Co31), 770 10$ (1963Cl06).
852.7 2	0.331 20	1623.44	5/2-	770.63	1/2-				$I_{\gamma}: weighted average of 0.439 30 (1987Ju05), 0.44 4 (1990Lo03),0.380 16 (1973Ra10), 0.3 1 (1963Cl06), 0.3 1 (1972Co31).Others: 0.28 3 (1972Pa30) (outlier), ≈0.3 (1960Ja16), <0.13(1964Fr04).%Iγ=0.078 5Eγ: others: 852.7 3 (1972Pa30), 852.8 10 (1972Co31), 855 10(1963Cl06), 855 10 (1965Sp07).Iγ: weighted average of 0.41 5 (1987Ju05), 0.40 5 (1990Lo03),0.340 16 (1973Ra10), 0.26 3 (1972Pa30), 0.3 1 (1963Cl06), 1.0 5with NaI/CT) (1965Sp07). 0.4 10 (1963Cl06), 1.0 5$
954.5 <i>3</i>	<0.015	1724.98	3/2-	770.63	1/2-				with Nat(11) (1963Sp07), 0.2 T (1972C031). Others: ≈ 0.2 (1960Ja16), <0.13 (1964Fr04). %I γ <0.0035 E $_{\gamma}$: others: 954.5 (1990Lo03), 960 (1963Cl06), 950 (1960Ja16). I $_{\gamma}$: others: 0.040 4 (1973Ra10), <0.024 (1963Cl06), ≈ 0.1
1115.53 4	65.8 2	1115.55	5/2-	0	3/2-	M1+E2	-0.34 5	0.0001833 27	(1960Ja16). %I γ =15.52 <i>11</i> α (K)=0.0001639 <i>24</i> ; α (L)=1.615×10 ⁻⁵ <i>24</i> ; α (M)=2.271×10 ⁻⁶ <i>33</i> α (N)=6.97×10 ⁻⁸ <i>10</i> ; α (IPF)=9.61×10 ⁻⁷ <i>18</i> E $_{\gamma}$: others: 1115.5 <i>1</i> (1972Pa30), 1115.4 <i>3</i> (1972Co31), 1114 <i>3</i> (1963Cl06), 1117 <i>2</i> (1965Sp07), 1115 <i>5</i> (1964Fr04). I $_{\gamma}$: weighted average of 65.4 <i>4</i> (1987Ju05), 66.0 <i>2</i> (1990Lo03), 64.4 <i>16</i> (1973Ra10), 60.0 <i>25</i> (1972Pa30), 63 <i>3</i> (1963Cl06), 63 <i>5</i>

4

⁶⁵₂₉Cu₃₆-4

	65 Ni β^- decay (2.5175 h) 1987Ju05,1990Lo03,1973Ra10 (continued)								
γ ⁽⁶⁵ Cu) (continued)									
E_{γ}^{\ddagger}	$I_{\gamma}^{\#a}$	E _i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_f^{π}	Mult.@	$\delta^{@}\&$	$lpha^{\dagger}$	Comments
				_					with Ge(Li) and 58 5 with NaI(Tl) (1965Sp07), 63 7 (1972Co31). Others: 64 (1960Ri06), 48 (1960Ja16), 71 (1964Fr04). δ : value from this dataset: $-0.4 + 2-1$ from measured $\gamma(\theta)$ anisotropy from oriented nuclei (1976Kr09). $\beta\gamma(CP)$ data, asymmetry A=0.23 4 (1968At03) and A=0.292 37 (1969Be28) consistent with a 5/2-(β_{-})5/2-(γ)3/2 ⁻ cascade
1481.84 5	100	1481.83	$7/2^{-}$	0	3/2-	E2		0.0001922 27	%Iy=24
									$\alpha(K) = 0.0001008 \ 14; \ \alpha(L) = 9.92 \times 10^{-6} \ 14; \ \alpha(M) = 1.395 \times 10^{-6} \ 20$
									$\alpha(N)=4.27\times10^{-6}$ 0; $\alpha(IPF)=8.00\times10^{-6}$ 11 E _v : others: 1481.9 1 (1972Pa30), 1481.7 3 (1972Co31), 1480 5
1 (2 2 4 2 4	2 07 2	1 (2 2 4 4	- 10-	0	a /a-		0.55 20 45	0.000000.0	(1963Cl06), 1483 3 (1965Sp07), 1480 5 (1964Fr04).
1623.42 6	2.07 3	1623.44	5/2-	0	3/2-	M1+E2	-0.75 + 30 - 45	0.000208 9	$\% 1\gamma = 0.488 8$ $\alpha(K) = 8.07 \times 10^{-5}$ 16: $\alpha(L) = 7.92 \times 10^{-6}$ 16: $\alpha(M) = 1.114 \times 10^{-6}$ 23
									$\alpha(N)=3.43\times10^{-8}$ 7: $\alpha(IPF)=0.000118$ 7
									E _γ : others: 1623.5 2 (1972Pa30), 1622.6 5 (1972Co31), 1625 10
									(1963Cl06), 1625 3 (1965Sp07), 1620 10 (1964Fr04).
									8 (1973Ra10), 1.88 <i>12</i> (1972Pa30), 2.8 <i>4</i> (1963Cl06), 2.4 <i>2</i>
									(1960Ri06), 1.5 5 with Ge(Li) and 4 <i>1</i> with NaI(Tl) (1965Sp07),
									2.1 5 (19/2Co31). Others: 3.4 (1960Ja16), 2.1 (1964Fr04). Mult δ : D+O and δ from measured $\gamma(\theta)$ anisotropy from oriented
									nuclei (1976Kr09). The same value is adopted in Adopted
1724.92 6	1.63 <i>1</i>	1724.98	$3/2^{-}$	0	$3/2^{-}$	M1+E2	0.32 5	0.0002269 34	%Iy=0.3845 <i>33</i>
									$\alpha(K) = 7.092 \times 10^{-5} 99; \ \alpha(L) = 6.96 \times 10^{-6} 10; \ \alpha(M) = 9.79 \times 10^{-7} 14$
									α (N)=3.01×10 ⁻⁸ 4; α (IPF)=0.0001480 23
									Mult., δ : D+Q and δ =-0.15 +31-35 or <-4.6 or >+2.3 from measured $\gamma(\theta)$ anisotropy from oriented nuclei (1976Kr09). Adopted in Adopted Gammas.
									E_{γ} : others: 1725.0 2 (1972Pa30), 1725.2 5 (1972Co31), 1724 10
									(1963C106), 1725 3 (1965Sp07), 1720 10 (1964Fr04).
									γ , weighted average of 1.09 5 (1987) 105 , 1.02 7 (1990) 1005 , 1.08 8 (1973Ra10), 1.61 10 (1972Pa30), 1.8 2 (1963Cl06), 2.2 2
									(1960Ri06), 1.4 5 with Ge(Li) and 2.5 5 with NaI(Tl) (1965Sp07),
									1.7 5 (1972Co31). Others: 2.1 (1960Ja16), 1.9 (1964Fr04).
1481.84 <i>5</i> 1623.42 <i>6</i> 1724.92 <i>6</i>	100 2.07 <i>3</i> 1.63 <i>1</i>	1481.83 1623.44 1724.98	7/2- 5/2- 3/2-	0	3/2 ⁻ 3/2 ⁻ 3/2 ⁻	E2 M1+E2 M1+E2	-0.75 + <i>30-45</i> 0.32 <i>5</i>	0.0001922 <i>27</i> 0.000208 <i>9</i> 0.0002269 <i>34</i>	from oriented nuclei (1976Kr09). $\beta\gamma(CP)$ data, asymmetry A=0.23 4 (1968At03) and A=0.292 37 (1969Be28) consistent with a 5/2–(β ⁻)5/2–(γ)3/2 ⁻ cascade. %Iy=24 $\alpha(K)=0.0001008 14; \alpha(L)=9.92\times10^{-6} 14; \alpha(M)=1.395\times10^{-6} 20$ $\alpha(N)=4.27\times10^{-8} 6; \alpha(IPF)=8.00\times10^{-5} 11$ E _y : others: 1481.9 1 (1972Pa30), 1481.7 3 (1972Co31), 1480 5 (1963Cl06), 1483 3 (1965Sp07), 1480 5 (1964Fr04). %Iy=0.488 8 $\alpha(K)=8.07\times10^{-5} 16; \alpha(L)=7.92\times10^{-6} 16; \alpha(M)=1.114\times10^{-6} 2.3$ $\alpha(N)=3.43\times10^{-8} 7; \alpha(IPF)=0.000118 7$ E _y : others: 1623.5 2 (1972Pa30), 1622.6 5 (1972Co31), 1625 10 (1963Cl06), 1625 3 (1965Sp07), 1620 10 (1964Fr04). I _y : weighted average of 2.11 6 (1987Ju05), 2.06 2 (1990Lo03), 2.08 8 (1973Ra10), 1.88 12 (1972Pa30), 2.8 4 (1963Cl06), 2.4 2 (1960Ri06), 1.5 5 with Ge(Li) and 4 1 with NaI(TI) (1965Sp07), 2.1 5 (1972Co31). Others: 3.4 (1960Ja16), 2.1 (1964Fr04). Mult, δ : D+Q and δ from measured $\gamma(\theta)$ anisotropy from oriented nuclei (1976Kr09). The same value is adopted in Adopted Gammas. %Iy=0.3845 33 $\alpha(K)=7.092\times10^{-5} 99; \alpha(L)=6.96\times10^{-6} 10; \alpha(M)=9.79\times10^{-7} 14$ $\alpha(N)=3.01\times10^{-8} 4; \alpha(IPF)=0.0001480 23$ Mult, δ : D+Q and $\delta=-0.15 + 31-35$ or <-4.6 or >+2.3 from measur $\gamma(\theta)$ anisotropy from oriented nuclei (1976Kr09). Adopted in Adopted Gammas. E _y : others: 1725.0 2 (1972Pa30), 1725.2 5 (1972Co31), 1724 10 (1963Cl06), 1725 3 (1965Sp07), 1700 10 (1964Fr04). I _y : weighted average of 1.69 5 (1987Ju05), 1.62 1 (1990Lo03), 1.68 8 (1973Ra10), 1.61 10 (1972Pa30), 1.82 2 (1963Cl06), 2.2 2 (1960Ri06), 1.4 5 with Ge(Li) and 2.5 5 with NaI(TI) (1965Sp07) 1.7 5 (1972Co31). Others: 2.1 (1960Ja16), 1.9 (1964Fr04).

 \mathbf{v}

[†] Additional information 6.
[‡] From 1973Ra10, except as noted.
[#] Relative intensity from 1987Ju05, unless otherwise noted. For values from 1972Co31, no uncertainty is given by the authors and the quoted uncertainties are

From ENSDF

 $^{65}_{29}$ Cu₃₆-5

⁶⁵Ni $β^-$ decay (2.5175 h) 1987Ju05,1990Lo03,1973Ra10 (continued)

$\gamma(^{65}Cu)$ (continued)

estimated by the evaluator based on those for absolute intensities as listed in Table I of 1972Co31.

[@] From Adopted Gammas. Supporting arguments and values from this data are given under comments where available.

[&] Additional information 7.

^{*a*} For absolute intensity per 100 decays, multiply by 0.2359 14.

^b Placement of transition in the level scheme is uncertain.

⁶⁵Ni β⁻ decay (2.5175 h) 1987Ju05,1990Lo03,1973Ra10

⁶⁵₂₉Cu₃₆