65 Ni β^- decay 1987Ju05,1973Ra10

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	E. Browne, J. K. Tuli	NDS 111, 2425 (2010)	1-Aug-2009

Parent: ⁶⁵Ni: E=0; $J^{\pi}=5/2^{-}$; $T_{1/2}=2.51719$ h 26; $Q(\beta^{-})=2137.9$ 7; % β^{-} decay=100.0

Additional information 1.

1990Lo03: E γ , I γ ; $4\pi\beta\gamma$ coincidences, Ge(Li).

1987Ju05: E γ , I γ , T_{1/2}; 4 $\pi\beta\gamma$ coincidences, Ge(Li), ionization chamber.

1980RuZY: $T_{1/2}$ and γ emission probabilities for 33 radionuclides are discussed along with an assessment of data uncertainties. 1973Ra10: E γ , I γ ; Ge(Li).

1971Me14,1980RuZY: I γ , I β^- , $\beta\gamma$ coincidences and T_{1/2}; proportional and ionization counters.

1972Pa30: E γ , I γ , $\gamma\gamma$ coincidences; Ge(Li), NaI.

1963Cl06: E γ , I γ , $\gamma\gamma$ coincidences, $\gamma\gamma(\theta)$ and T_{1/2}; $4\pi\beta$ counter, NaI.

1968Re04: ⁶⁵Ni T_{1/2}.

1977Ba64: ⁶⁵Ni T_{1/2}.

1964Fr04: $E\gamma$, $I\gamma$, $E\beta^-$, $I\beta^-$; magnetic spectrometer, NaI.

1965Sp07: E γ , I γ , $\gamma\gamma$ coincidences and $\gamma\gamma(\theta)$; Ge(Li), NaI.

1976Kr09: $\gamma(\theta)$ anisotropies from oriented nuclei; Ge(Li).

1968At03,1969Be28: β - γ circular polarization correlations; magnetic spectrometer, scintillators, Ge(Li).

Others: 1958Ha11, 1960Ja16, 1962Ba27.

Absolute intensities for 1482γ : 23.59% *14* (1987Ju05), 23.5% *4* (1980RuZY) and 21.95% *28* (1990Lo03). The first two show excellent agreement while the last one is lower by 7%. Further, the absolute intensities of 1990Lo03 are systematically lower than the 1987Ju05 values by 8-11% for other γ rays. There is good agreement between the intensities of 1973Ra10 and 1987Ju05.

⁶⁵Cu Levels

E(level) [†]	J ^π ‡
0	3/2-
770.63 13	$1/2^{-}$
1115.55 <i>3</i>	$5/2^{-}$
1481.83 4	$7/2^{-}$
1623.44 6	$5/2^{-}$
1724.98 6	$3/2^{-}$

[†] From a least-squares fit to $E\gamma$ data.

[‡] From Adopted Levels.

β^{-} radiations

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments
(412.9 7)	1724.98	0.555 13	5.90 1	av E β =128.4 4
(514.5 7)	1623.44	0.89 2	6.03 1	av $E\beta = 165.85$
650 30	1481.83	28.4 2	4.901 4	av E β =220.5 5
				E(decay): from 1964Fr04.
1020 25	1115.55	10.18 13	6.064 6	av E β =371.7 5
				E(decay): from 1964Fr04.
2140 10	0	60.0 <i>3</i>	6.576 2	av $E\beta = 875.4 \ 6$
				E(decay): from 1964Fr04.

[†] From γ intensity imbalance at each level.

[‡] Absolute intensity per 100 decays.

⁶⁵Ni $β^-$ decay 1987Ju05,1973Ra10 (continued)

 $\gamma(^{65}Cu)$

I γ normalization: From absolute I γ (1482)=23.59% 14 (1987Ju05).

E_{γ}^{\ddagger}	Ι _γ #&	E_i (level)	\mathbf{J}_i^π	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.@	$\delta^{@}$	α^{\dagger}	Comments
366.27 3	20.37 22	1481.83	7/2-	1115.55	5/2-	M1+E2	-0.031 5	0.00202 3	$\begin{aligned} \alpha = 0.00202 \ 3; \ \alpha(K) = 0.00181 \ 3; \\ \alpha(L) = 0.000181 \ 3; \\ \alpha(M) = 2.55 \times 10^{-5} \ 4; \\ \alpha(N+) = 7.74 \times 10^{-7} \ 11 \\ \alpha(N) = 7.74 \times 10^{-7} \ 11 \\ (366\gamma)(1115\gamma)(\theta): \ A_2 = 0.172 \ 6, \\ A_4 = 0.013 \ 10 \ (1965Sp07). \\ Others: \ 1958Ha11, \ 1960Ja16, \\ 1963C106. \\ \delta: \ -0.031 \ 5 \ or \ +9.4 \ 5 \ from \\ analysis \ of \ \gamma\gamma(\theta) \ data \ of \\ 1965Sp07. \ The \ larger \ value \ is \\ rejected \ from \ RUL. \ Other: \\ -0.03 \ 3 \ from \ measured \ \gamma(\theta) \\ anisotropy \ from \ oriented \ nuclei \\ (1976Kr09). \end{aligned}$
507.9 1	1.240 <i>19</i>	1623.44	5/2-	1115.55 5	5/2-	M1+E2	+0.20 4	0.000980 <i>19</i>	α =0.000980 <i>19</i> ; α (K)=0.000880 <i>17</i> ; α (L)=8.76×10 ⁻⁵ <i>17</i> ; α (M)=1.232×10 ⁻⁵ <i>24</i> ; α (N+)=3.75×10 ⁻⁷ α (N)=3.75×10 ⁻⁷ <i>7</i> E _y : from 1972Pa30. (507 γ)(1115 γ)(θ): A ₂ =-0.200 <i>35</i> , A ₄ =-0.013 <i>57</i> (1965Sp07). δ : -2.8 <i>3</i> or +0.20 <i>4</i> from analysis of $\gamma\gamma(\theta)$ data of 1965Sp07. The smaller value is preferred from PLU
609.5 1	0.655 17	1724.98	3/2-	1115.55 5	5/2-	M1+E2	-0.08 5	0.000636 10	α =0.000636 10; α (K)=0.000571 9; α (L)=5.67×10 ⁻⁵ 9; α (M)=7.97×10 ⁻⁶ 13; α (N+)=2.44×10 ⁻⁷ 4 α (N)=2.44×10 ⁻⁷ 4 E _y : from 1972Pa30. (607 γ)(1115 γ)(θ): A ₂ =0.209 69, A ₄ =-0.160 111 (1965Sp07). δ : -0.08 5 or +4.8 +26-13 from analysis of $\gamma\gamma(\theta)$ data of 1965Sp07. The larger value is raioated from PLU
770.6 2	0.439 <i>30</i>	770.63	1/2-	0 3	3/2-	M1+E2	0.096 7	0.000384 6	rejected from RUL. α =0.000384 6; α (K)=0.000345 5; α (L)=3.41×10 ⁻⁵ 5; α (M)=4.80×10 ⁻⁶ 7; α (N+)=1.470×10 ⁻⁷ 21 α (N)=1.470×10 ⁻⁷ 21
852.7 2 954.5 <i>3</i>	0.41 5 <0.015	1623.44 1724.98	5/2 ⁻ 3/2 ⁻	770.63 770.63	1/2 ⁻ 1/2 ⁻				Not observed by 1972Pa30.

Continued on next page (footnotes at end of table)

 $^{65}_{29}Cu_{36}$ -3

				⁶⁵ N	$\delta i \beta^- d c$	ecay 1987	Ju05,1973Ra1	10 (continued)	
$\gamma(^{65}Cu)$ (continued)									
Eγ‡	Ι _γ #&	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.@	$\delta^{@}$	α^{\dagger}	Comments
1115.53 4	65.4 <i>4</i>	1115.55	5/2-	0	3/2-	M1+E2	-0.450 16	0.000185 3	$\alpha = 0.000185 \ 3; \ \alpha(K) = 0.0001655 \ 24; \alpha(L) = 1.631 \times 10^{-5} \ 23; \alpha(M) = 2.29 \times 10^{-6} \ 4; \alpha(N+) = 1.058 \times 10^{-6} \alpha(N) = 7.04 \times 10^{-8} \ 10; \alpha(IPF) = 9.87 \times 10^{-7} \ 15 \delta: -0.4 + 2 - 1 from measured \ \gamma(\theta) anisotropy from oriented nuclei (1976Kr09). \beta-\gamma(CP) data, asymmetry A=0.23 \ 4 (1968At03) A=0.292 \ 37 (1969Be28) consistent with a 5/2-(\beta^-)5/2-(\gamma)3/2^- cascade.$
1481.84 5	100	1481.83	7/2-	0	3/2-	E2		0.000192 3	$\alpha = 0.000192 \ 3; \ \alpha(K) = 0.0001008 \ 15; \\ \alpha(L) = 9.92 \times 10^{-6} \ 14; \\ \alpha(M) = 1.395 \times 10^{-6} \ 20; \\ \alpha(N+) = 8.01 \times 10^{-5} \\ \alpha(N) = 4.27 \times 10^{-8} \ 6; \\ \alpha(IPF) = 8.00 \times 10^{-5} \ 12$
1623.42 6	2.11 6	1623.44	5/2-	0	3/2-	(M1+E2)	-0.8 +3-5	0.000209 9	α =0.000209 9; α (K)=8.08×10 ⁻⁵ 17; α (L)=7.94×10 ⁻⁶ 17; α (M)=1.116×10 ⁻⁶ 24; α (N+)=0.000119 8 α (N)=3.43×10 ⁻⁸ 7; α (IPF)=0.000119 8 Multipolarity, δ : from measured $\gamma(\theta)$ anisotropy from oriented muclei (1976Kr09)
1724.92 6	1.69 5	1724.98	3/2-	0	3/2-	M1+E2		0.000244 22	

[†] Additional information 2. [‡] From 1973Ra10, except as noted. [#] Relative intensity (1987Ju05). [@] From adopted gammas; supporting arguments from this data set based on $\gamma(\theta)$, $\gamma\gamma(\theta)$ and RUL are indicated. [&] For absolute intensity per 100 decays, multiply by 0.2359 *14*.

⁶⁵Ni β^- decay 1987Ju05,1973Ra10

Decay Scheme

