⁶⁶**Zn**(t, α) **1967Ba14**

History											
Type	Author	Citation	Literature Cutoff Date								
Full Evaluation	Jun Chen	NDS 202,59 (2025)	25-Feb-2025								

1967Ba14: E=13 MeV triton beam was produced from the Aldermaston tandem Van-de-Graaff generator. Target was about 250 μ g/cm² self-supporting ⁶⁶Zn (>99% enriched). Reaction products were momentum-analyzed with a broad-range multi-angle magnetic spectrograph (FWHM=20 keV). Measured $\sigma(E_{\alpha},\theta)$, $\theta_{cm}\approx20^{\circ}-120^{\circ}$. Deduced levels, J, π , L-transfers, spectroscopic factors from DWBA analysis.

1984Ca26: E=18 MeV triton beam was produced from the McMaster University tandem accelerator. Target was >98% enriched 66 Zn with thickness of 100 μ g/cm² on a 10 μ g/cm² carbon backing. Reaction products were momentum-analyzed with an Enge split-pole magnetic spectrometer (FWHM=20 keV). Measured $\sigma(E_{\alpha},\theta)$, θ_{lab} =15° to 50° in 5° steps. Deduced levels, J, π , L-transfers, spectroscopic factors from DWBA analysis. Comparisons with available data.

⁶⁵Cu Levels

Spectroscopic factor is obtained by using $d\sigma/d\Omega(exp)=N\times C^2S\times d\sigma/d\Omega(DWBA)$, where N is the normalization factor.

E(level) [†]	L^{\ddagger}	S [‡]	E(level) [†]	L^{\ddagger}	S [‡]	E(level) [†]	L^{\ddagger}	S [‡]	E(level) [†]	L^{\ddagger}	S [‡]
0#	1	1.52	2594 15			3267 [#] 15	2	0.66	4251 15	1	0.04
771 [#] <i>15</i>	1	0.45	2654 [#] <i>15</i>	3	1.98	3358 [#] <i>15</i>	2	0.24	4415 <i>15</i>	3	0.99
1115 [#] <i>15</i>	3	0.66	2752 [#] <i>15</i>			3432 [#] <i>15</i>	3	0.63	4528 <i>15</i>	0	0.89
1481 [#] <i>15</i>	3	0.89	2846 <i>15</i>			3510 [#] <i>15</i>	2	0.26	4562 15	3	0.93
1623 [#] <i>15</i>	3	0.43	2870 [@] 15			3629 [#] <i>15</i>	1	0.26	4611 <i>15</i>	3	0.26
2093 [#] <i>15</i>	3	1.45	2897 [@] 15			3691 <i>15</i>			4678 <i>15</i>		
2213 15			2982 <i>15</i>			3736 <i>15</i>			4761 <i>15</i>		
2278 [#] <i>15</i>	3	0.65	3028 <i>15</i>			3772 15	2	0.21			
2407 15			3079 [#] <i>15</i>	1	0.18	3897 15	0	0.40			
2535 [#] 15	4	0.35	3243 <i>15</i>			4007 15	3	0.22			

[†] From 1967Ba14

[‡] From DWBA analysis of measured $\sigma(\theta)$ in 1967Ba14. C²S values are normalized to Σ C²S(f7/2)=8.0.

[#] Level also seen by 1984Ca26.

[@] 1984Ca26 report a peak at 2885 which could be due to levels at 2870 and 2897.