Adopted Levels

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 202,59 (2025)	25-Feb-2025

 $Q(\beta^{-})=12759 \ 45$; $S(n)=2706 \ 52$; $S(p)=19280 \ syst$; $Q(\alpha)=-14370 \ syst$ 2021Wa16

 $Q(\beta^{-}),S(n)$: Deduced by the evaluator from mass excesses of $-28208 \ 45$ for ^{65}Cr and $-33573 \ 26$ for ^{64}Cr measured by 2022Si20, and $-40967 \ 4$ for ^{65}Mn from 2021Wa16. Values from 2021Wa16: $Q(\beta^{-})=12660 \ 200$ (syst), $S(n)=2740 \ 360$ (syst).

 Δ S(p)=450, Δ Q(α)=360 (syst, 2021Wa16).

S(2n)=8147 49, $Q(\beta^{-}n)=6710$ 45, from mass excesses of ^{65}Cr and ^{63}Cr (-36204 18) measured by 2022Si20 and -42989 4 for ^{64}Mn from 2021Wa16. Values from 2021Wa16: S(2n)=8270 210 (syst), $Q(\beta^{-}n)=6610$ 200 (syst).

S(2p)=37030 540 (syst, 2021Wa16).

Mass measurements: 2022Si20 (M.E.=-28208 45), 2020Me06 (M.E.=-27280 780).

2022Si20: ⁶⁵Cr was produced via U(p,X) with a 480 MeV proton beam impinged on a UC_x target at the ISAC facility of TRIUMF. Fragments were separated by the ISAC dipole magnetic separator and sent to a Multiple-Reflection Time-of-Flight Mass Spectrometer (MR-TOF-MS) of the TITAN facility. Measured time-of-flight, storage time. Deduced mass excess, T_{1/2}.

2020Me06: ⁶⁵Cr was produced by fragmentation of a 140 MeV/nucleon ⁸²Se beam on a Be target at NSCL. Fragments were separated by the A1900 fragment separator, analyzed with the S800 spectrograph, and stopped in the focal plane of S800, with identification using the TOF- Δ E method. Deduced mass excess from the magnetic-rigidity corrected time-of-flight (TOF-B ρ) mass spectrometry.

2011Da08: ⁶⁵Cr was produced in the fragmentation of 57.8 MeV/nucleon ⁸⁶Kr beam impinged on 50 mg/cm² thick tantalum target at GANIL. Fragments were identified and selected using the LISE-2000 spectrometer with a three-element Si-detector telescope, and implanted into a double-sided silicon-strip detector (DSSSD) backed by a Si(Li) detector and surrounded by four clover type EXOGAM Ge detectors. Measured implant- β time correlation. Deduced ⁶⁵Cr decay half-life. See also 2002MaZN thesis.

2005Ga01,2003So21: ⁶⁵Cr was produced by fragmentation of a 61.8 MeV/nucleon ⁷⁶Ge beam on a ⁵⁸Ni target at GANIL. Fragments were identified and seperated by the LISE3 spectrometer with 3 consecutive silicon detectors, and implanted into the last Si detector surrounded by 4 Ge detectors for γ detection. Measured E β , $\beta\gamma$ -coin, implant- β (t). Deduced ⁶⁵Cr decay T_{1/2}.

1997Be70: ⁶⁵Cr was produced by fission of uranium projectiles at relativistic energies on a beryllium target at GSI. Identification of fission fragments was done with a fragment separator (FRS) using energy-loss measurements for element identification, and time-of-flight and magnetic rigidity for mass determination. Measured production yields. See also 1995CzZZ for their first measurement and preliminary results.

1995CzZZ: Pb,Be(²³⁸U,F) E=750 MeV/nucleon at GSI. A preliminary result reveals more than 50 new neutron-rich isotopes ranging from ⁶²V to ¹²⁰Ru identified by time-of-flight using the fragment separator FRS. No detailed results are presented. This preliminary report is superseded by 1997Be70.

Theoretical calculation:

2011Gu03: calculated rms radius of p-wave valence neutron distribution.

⁶⁵Cr Levels

E(level)	T _{1/2}	Comments
$\frac{E(1ever)}{0.0}$	$\frac{11/2}{27 \text{ ms } 3}$	$%β^{-}=100$ $J^{\pi}: 1/2^{-} (syst, 2021Ko07), 9/2^{+} (predicted, 2019Mo01).$ $T_{1/2}: weighted average of 27 ms 3 (2005Ga01, 2003So21) and 28 ms 3 (2011Da08), both from implant-β time correlation, and 23 ms 12 from a storage-time measurement (2022Si20).$ From measured intensities of γ rays from the β decay of ⁶⁵ Cr and daughter nucleus ⁶⁵ Mn, 2005Ga01
		claim that the decay of ⁶⁵ Cr stays in the A=65 chain and scarcely occurs through β -delayed neutron emissions. Calculated $\%\beta^-$ 0n=92, $\%\beta^-$ 1n=8 (2019Mo01). Calculated $\%\beta^-$ 0n=96.44, $\%\beta^-$ 1n=3.44, $\%\beta^-$ 2n=0.12 (2021Mi17).