⁶⁵Fe β^- decay (0.805 s) 2019Ol02,2009Pa16

Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 202,59 (2025)	25-Feb-2025

Parent: ⁶⁵Fe: E=0; $J^{\pi}=(1/2^{-})$; $T_{1/2}=0.805 \text{ s } 10$; $Q(\beta^{-})=7967 6$; $\%\beta^{-}$ decay=100

⁶⁵Fe-J^π,T_{1/2}: From Adopted Levels of ⁶⁵Fe. Adopted T_{1/2} is taken from 2019Ol02 in this dataset. Other: 0.81 s 5 (2009Pa16). ⁶⁵Fe-Q(β^-): From 2021Wa16.

- Adapted from the XUNDL dataset for 2009Pa16 compiled by by B. Karamy and B. Singh (McMaster), also including some data received from D. Pauwels in an email reply to B. Singh on May 12, 2009; and the XUNDL dataset for 2019Ol02 compiled by E.A. McCutchan (NNDC,BNL) on December 20, 2020.
- 2019Ol02: ⁶⁵Fe source was from the decay of ⁶⁵Mn produced by ²³⁸U(p,F) with 1.4 MeV proton from the pulsed CERN Proton Synchrotron Booster on an UC_x target. Fission products thermally released from the target were ionized by the ISOLDE Resonance Ionization Laser Ion Source (RILIS), mass separated and implanted on a thin aluminum foil surrounded by a fast plastic scintillator for detecting β particles and two truncated-cone shaped LaBr₃(Ce) crystals and two HPGe detectors for detecting γ rays. Measured E γ , I γ , $\beta\gamma\gamma$ -coin, $\beta\gamma(t)$, $\beta\gamma\gamma(t)$. Deduced levels, J, π , T_{1/2}, β -decay branching ratios, log *ft*. Comparisons with shell-model calculations with the LNPS interaction. Even though a saturated mixed source of ⁶⁵Fe g.s. and isomer was used, the decay scheme of ⁶⁵Fe g.s. β decay can be constructed based on $\gamma\gamma$ -coin gating on 883 γ and γ singles which are only seen in the decay of ⁶⁵Fe ground state.
- 2009Pa16: ⁶⁵Fe source was produced by ²³⁸U(p,F) with 30 MeV proton from the LISOL facility of the Cyclotron Research Center (CRC) at Louvain-La-Neuve (Belgium) on a 10 mg/cm² ²³⁸U target inside a gas catcher for stopping and thermalizing the recoiling fission products. Ions leaving the gas are transported through a SextuPole Ion Guide (SPIG), accelerated, mass separated, and implanted into a detection tape surrounded by three thin plastic ΔE detectors for detecting β particles and two MINIBALL clusters for detecting γ rays. Measured E γ , I γ , $\beta\gamma\gamma$ -coin, $\gamma(t)$. Deduced levels, J, π , parent T_{1/2}, β -decay branching ratios, log *ft*. 2009Pa16 also study ⁶⁵Fe decay using ⁶⁵Fe source produced in deep inelastic reaction ²³⁸U(⁶⁴Ni,X γ) with E=430 ⁶⁴Ni beam at ANL and measuring $\beta\gamma\gamma\gamma$ -coin.
- 2005GaZR (thesis): ⁶⁵Fe source is from the decay of ⁶⁵Mn produced by fragmentation of a 61.8 MeV/nucleon ⁷⁶Ge beam on a ⁵⁸Ni target at GANIL. Measured E γ , I γ . Deduced levels, J, π , decay branching ratios, log *ft*. Report 7 transitions.
- The decay scheme is considered incomplete by the evaluator due to possible missing levels in a large energy gap of about 5.5 MeV between the highest observed level at E=2470 keV and Q-value=7967 keV 6, mainly because of possible unobserved γ rays from those levels.

⁶⁵Co Levels

E(level) ^{†‡}	J ^{##}	T _{1/2} @	Comments
0.0	(7/2)-	1.16 [#] s 3	
882.69 7	$(3/2^{-})$	4 ps 4	
1095.34 8	$(1/2^{-})$	1.250 ns 20	
1222.76 7	$(3/2^{-})$	55 ps 6	
1557.47 7	$(3/2^{-}, 5/2, 7/2^{-})$		
1948.20 12			
1959.13 8	$(3/2^{-})$	<90 ps	J^{π} : $(1/2^{-}, 3/2^{-})$ in 2009Pa16 and 2019Ol02.
1996.52 6	$(3/2^{-})$	<90 ps	
2183.83 11	$(1/2^{-}, 3/2^{-})$	<160 ps	
2276.07 12			
2470.12 12	$(3/2^{-}, 5/2, 7/2^{-})$		

[†] Additional information 1.

[‡] From a least-squares fit to γ -ray energies.

From Adopted Levels.

^(a) From $\beta\gamma(t)$ or $\beta\gamma\gamma(t)$ (883 and 1223 levels only) in 2019Ol02, with the limit deduced from lack of a delayed component in $\beta\gamma(t)$, unless otherwise noted. Values are adopted in Adopted Levels.

⁶⁵Fe $β^-$ decay (0.805 s) 2019Ol02,2009Pa16 (continued)

β^- radiations

av E β : Additional information 2.

E(decay)	E(level)	$I\beta^{-\dagger\ddagger}$	Log ft	Comments				
(5497 6)	2470.12	1.29	5.98	av Eβ=2489.1 29				
(5691 6)	2276.07	0.49	6.5	$I\beta^-: 1.3 I (2019Ol02).$ av $E\beta=2583.4 29$ $I\beta^-: 0.5 I (2019Ol02)$				
(5783 6)	2183.83	11.1	5.1	$\mu = 1001 - 1001 - 1001 - 1001 - 10000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 1000 - 10$				
(5971 6)	1996.52	36.3	4.69	av $E\beta$ =2719.0 29 I β =: 35.2 (2019O102), 40.6 (2009Pa16).				
(6008 6)	1959.13	22.3	4.91	$\alpha V \in \beta = 2737.5 \ 29$ $I\beta = 2737.5 \ 29$				
(6019 6)	1948.20	0.55	6.5	av $E\beta$ =2742.8 29 B^{-2} , 0.6 J (20190102)				
(6410 6)	1557.47	0.92	6.4	av $E\beta = 2933.0.29$ $B^{-2} = 0.9.2 (20190102)$				
(6744 6)	1222.76	17.8	5.2	av $E\beta$ =3095.5 29 B^{-1} : 18.3 (20190102), 18.5 (2009Pa16)				
(6872 6)	1095.34	2.5	6.1	av $E\beta$ =3157.8 29 B^{-2} > 2.8.6 (2019O102) <3 (2009Pa16)				
(7084 6)	882.69	7	5.9	av $E\beta$ =3261.1 29 I β ⁻ : 5 5 (2019Ol02), 12 3 (2009Pa16).				

[†] From γ +ce intensity balance at each level. All β feedings should be considered as upper limits and thus associated log *ft* values as lower limits, due to possible missing γ rays in this incomplete decay scheme. Original values from 2019Ol02 and 2009Pa16 deduced in the same way by the authors are given under comments.

[‡] Absolute intensity per 100 decays.

γ (⁶⁵Co)

I γ normalization: 0.613 31 from $\Sigma[\%I(\gamma+ce \text{ to g.s.})]=100$. Due to possible missing unobserved transitions to g.s. in this incomplete decay scheme, this value should be considered as an upper limit. 2019Ol02 use intensity balance of entire A=65 decay chain to determine that β feeding to ground state is <0.3%. 2009Pa16 give a normalization factor of 0.20 6, which the evaluator could not reproduce from the level scheme given by 2009Pa16.

	E_{γ}^{\ddagger}	$I_{\gamma}^{\ddagger \#}$	E _i (level)	\mathbf{J}_i^π	E_f	${ m J}_f^\pi$	Mult.	α^{\dagger}	Comments
	127.3 <i>1</i>	2.2 2	1222.76	(3/2 ⁻)	1095.34	(1/2 ⁻)	[M1]	0.02147 30	$\alpha(K)=0.01926\ 27;\ \alpha(L)=0.001924\ 27;\ \alpha(M)=0.000268\ 4$ $\alpha(N)=1.171\times10^{-5}\ 17$ %Iy=1.3 F. L: others: 127.6.3 with by=3.4.12 (2009Pa16): 127.7.5 with
	212.7 1	12.1 9	1095.34	(1/2 ⁻)	882.69	(3/2 ⁻)	[M1,E2]	0.018 12	I _γ (γ) of the large state of the large state (2009 Pa16), 121.7 5 with I _γ =2 <i>I</i> (2009 Pa16, ⁶⁵ Fe from deep inelastic). $\alpha(K)=0.016$ <i>II</i> ; $\alpha(L)=0.0016$ <i>II</i> ; $\alpha(M)=2.3\times10^{-4}$ <i>I5</i> $\alpha(N)=9$ %I _γ =7.4 E _γ : others: 212.5 2 (2009 Pa16); 212.0 2 with I _γ =6 2 (2000 Pa16, ⁶⁵ Fe from deep inelastic).
3	340.10 6	48 2	1222.76	(3/2 ⁻)	882.69	(3/2 ⁻)	[M1,E2]	0.0037 18	$(2009Pa10, \ ^{\circ}Pe$ from deep inelastic). I_{γ} : weighted average of 11.1 <i>13</i> (2009Pa16) and 12.5 <i>9</i> (2019Ol02). $\alpha(K)=0.0033 \ 16; \ \alpha(L)=3.2\times10^{-4} \ 16; \ \alpha(M)=4.5\times10^{-5} \ 22$ $\alpha(N)=1.9\times10^{-6} \ 9$
									%I γ =29 E $_{\gamma}$: weighted average of 340.07 <i>6</i> (2009Pa16) and 340.2 <i>I</i> (2019Ol02). Others: 339.7 2 with I γ =40 3 (2009Pa16, ⁶⁵ Fe from deep inelastic); 340 2 with I γ =28 (2005GaZR); 340.0 3 assigned to ⁶⁵ Ni by 1988Bo06.
	439.1 <i>1</i>	1.7 <i>1</i>	1996.52	$(3/2^{-})$	1557.47	$(3/2^{-}, 5/2, 7/2^{-})$			%Iy=1.0
	626.4 2	0.4 1	2183.83	$(1/2^{-}, 3/2^{-})$	1557.47	$(3/2^{-}, 5/2, 7/2^{-})$			%Iγ=0.25
	674.9 <i>1</i>	1.3 1	1557.47	$(3/2^{-}, 5/2, 7/2^{-})$	882.69	$(3/2^{-})$			%I ₇ =0.8
	736.4 1	24 2	1959.13	(3/2 ⁻)	1222.76	(3/2 ⁻)			$\%$ I γ =15 E $_{\gamma}$: others: 736.1 <i>10</i> (2009Pa16); 736.1 <i>2</i> with I γ =20 <i>1</i> (2009Pa16, ⁶⁵ Fe from deep inelastic); 738 <i>2</i> with I γ =20 (2005GaZR).
	773.8 1	4.6 <i>3</i>	1996.52	(3/2 ⁻)	1222.76	(3/2 ⁻)			I _{γ} : weighted average of 22 2 (2009Pa16) and 26 2 (2019Ol02). %I γ =2.8 E _{γ} ,I _{γ} : others: 774.0 <i>10</i> with I γ =6 4 (2009Pa16); 773.8 5 with
	863.9 <i>1</i>	1.4 <i>1</i>	1959.13	(3/2 ⁻)	1095.34	(1/2 ⁻)			I γ =4 2 (2009Pa16, ⁶⁵ Fe from deep inelastic). %I γ =0.86 E $_{\gamma}$,I $_{\gamma}$: others: 864.0 <i>10</i> with I γ =1.8 <i>10</i> (2009Pa16); 863.8 <i>5</i> with I γ =3 <i>1</i> (2009Pa16, ⁶⁵ Fe from deep inelastic).

				65 Fe β^- decay (0.805 s)		2019Ol02,200	9Pa16 (continued)	
γ ⁽⁶⁵ Co) (continued)								
E_{γ}^{\ddagger}	Ι _γ ‡#	E _i (level)	${ m J}^{\pi}_i$	E_f	\mathbf{J}_f^{π}	Mult.	$lpha^{\dagger}$	Comments
882.65 15	100 7	882.69	(3/2 ⁻)	0.0	(7/2)-	[E2]	0.000296 4	$\alpha(K)=0.000267 \ 4; \ \alpha(L)=2.59\times10^{-5} \ 4; \ \alpha(M)=3.60\times10^{-6} \ 5 \ \alpha(N)=1.599\times10^{-7} \ 22 \ \%I\gamma=61$ E : unwaighted average of 882 50 9 (2009Pa16) and 882 8 1
001 2 <i>I</i>	0.9.1	1006 52	(3/2 ⁻)	1005 34	$(1/2^{-})$			(20190102). Others: 883.3 2 with $I\gamma$ =100 (2009Pa16, ⁶⁵ Fe from deep inelastic); 882 2 with $I\gamma$ =100 (2005GaZR); 882.6 5 assigned to ⁶⁵ Ni by 1988Bo06.
960.8 <i>3</i>	14 2	2183.83	$(3/2^{-})$ $(1/2^{-}, 3/2^{-})$	1095.34	(1/2) $(3/2^{-})$			%Iy=0.55 %Iy=8.6
								 E_γ: unweighted average of 960.5 2 (2009Pa16) and 961.1 <i>I</i> (2019Ol02). Others: 961.4 2 with Iγ=13 3 (2009Pa16, ⁶⁵Fe from deep inelastic); 961 2 (2005GaZR). L_γ: weighted average of 9.3 (2009Pa16) and 14 <i>I</i> (2019Ol02).
								Other: 12 (2005GaZR).
1053.3 <i>I</i>	0.8 1	2276.07		1222.76	$(3/2^{-})$			%Iy=0.49
1065.5 <i>I</i> 1076 3 <i>I</i>	0.9 <i>1</i> 10.6 <i>11</i>	1948.20	$(3/2^{-})$	882.69	(3/2) $(3/2^{-})$			$\%1\gamma = 0.55$ $\%1\gamma = 6.5$
107012 1	10.0 11	1757.15	(0)2)	002.09	(3/2)			E_{γ} : others: 1076.2 <i>3</i> (2009Pa16), 1077 <i>2</i> (2005GaZR). I _{\gamma} : weighted average of 8.3 <i>18</i> (2009Pa16) and 11.1 <i>8</i> (2019Ol02). Other: 39 from 2005GaZR is discrepant.
1088.5 <i>1</i>	3.7 3	2183.83	(1/2 ⁻ ,3/2 ⁻)	1095.34	(1/2 ⁻)			$\%$ I γ =2.3 E _{γ} ,I $_{\gamma}$: others: 1088.7 6 with I γ =3.9 13 (2009Pa16); 1089.1 2 with I γ =8.3 (2009Pa16) ⁶⁵ Ee from deep inelastic)
1113.7 <i>1</i>	14 <i>I</i>	1996.52	(3/2 ⁻)	882.69	$(3/2^{-})$			%Iy=8.6 F. L. t. ether. 1112.5.2 with Iv=15.2 (2000Pc16)
1222.8 <i>1</i>	22 2	1222.76	(3/2 ⁻)	0.0	(7/2)-	[E2]	0.0001496 21	$\alpha(K)=0.0001234\ 17;\ \alpha(L)=1.189\times10^{-5}\ 17;\ \alpha(M)=1.658\times10^{-6}\ 23$
								$\alpha(N) = 7.40 \times 10^{-5} T0; \alpha(IPF) = 1.258 \times 10^{-5} T8$ %I γ = 13
								E_{γ} : others: 1222.7 2 (2009Pa16); 1222 2 (2005GaZR). I_{γ} : weighted average of 23 3 (2009Pa16) and 21 2 (2019Ol02).
1557 4 1	222	1557 17	(2/2-5/27/2-)	0.0	$(7/2)^{-}$			Other: 12 (2005GaZR).
1537.4 1	2.5 2	2470.12	(3/2, 3/2, 1/2) $(3/2^{-}, 5/2, 7/2^{-})$	882.69	(1/2) $(3/2^{-})$			$\%1\gamma = 1.4$ % $1\gamma = 0.98$
1958.8 5	0.4 1	1959.13	$(3/2^{-})$	0.0	$(7/2)^{-}$			%Iy=0.25
								I _{γ} : from the level scheme in FIG.4 of 2019Ol02. The value of 0.1 <i>I</i> in TABLE I of 2019Ol02 is likely a misprint. Authors' B(E2)(W.u.) value for this γ in TABLE III is consistent with I γ =0.4 but not 0.1.
1996.5 <i>1</i>	38 4	1996.52	(3/2 ⁻)	0.0	$(7/2)^{-}$			%Iy=23
								E_{γ} : otners: 1990.6 4 (2009Pa16); 1993 2 (2005GaZR).

4

 $^{65}_{27}\mathrm{Co}_{38}$ -4

2019Ol02,2009Pa16 (continued)

 65 Fe β^- decay (0.805 s)

[†] Additional information 4.

^{\pm} From 2019Ol02, unless otherwise noted. Values reported in 2009Pa16 are from the measurement using ⁶⁵Fe source from ²³⁸U(p,F); values from the decay of ⁶⁵Fe source produced in deep inelastic reaction ${}^{238}U({}^{64}Ni,X\gamma)$ in 2009Pa16 are given under comments as noted where available and these values were communicated to B. Singh in an e-mail reply from D. Pauwels (first author of 2009Pa16) on May 12, 2009.

[#] For absolute intensity per 100 decays, multiply by 0.613.

65 Fe β^- decay (0.805 s) 2019Ol02,2009Pa16

