Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 202,59 (2025)	25-Feb-2025

 $Q(\beta^{-})=5940.6\ 21;\ S(n)=7464\ 20;\ S(p)=11505\ 5;\ Q(\alpha)=-9868\ 3$ 2021Wa16

S(2n)=13476 19, S(2p)=26876 4 (2021Wa16).

Mass measurements: 2010Fe01 (mass excess=-59185.1 21), 1978Ko24 (M.E.=-59168 20).

Additional information 1.

2010Fe01 (also 2008Bl05): E=130 MeV/nucleon ⁷⁶Ge beam was produced from the cyclotron at NSCL. Fragments were separated by the A1900 fragment separator and transported to the Low Energy Beam and Ion Trap (LEBIT) facility. Measured masses using the TOF ion cyclotron resonance (TOF-ICR) technique.

1994Cz02: ⁶⁵Fe produced from fragmentation of 500-MeV/u ⁸⁶Kr beam at GSI. Measured ion- β^- time correlation. Deduced half-life.

1988Bo06,1985Ru05: ⁶⁵Co produced by the irradiation of a natural W target with 11.5-MeV/u ⁷⁶Ge beam and on-line mass separation at GSI. Measured ⁶⁵Co T_{1/2}.

1978Ko24: ⁶⁵Co activity from ⁷⁰Zn(³He,⁸B) at E(³He)=80.13 MeV 5; Q3D magnetic spectrometer, proportional counters, plastic scintillator. Measured mass.

Other measurements:

2015Ro11: ¹H(²⁰⁸Pb,F) E=500 MeV/nucleon at GSI. Measured fission fragments.

2015A119: ${}^{2}H({}^{136}Xe,X)$ E=500 MeV/nucleon at GSI. Measured yield and σ .

2007Na31: ¹³⁶Xe(p,X) E=1 GeV at GSI. Measured isotopic cross sections and kinetic energies.

2002Kr13: ²³⁸U(p,F) E=30 MeV at CERN. Measured fission yields.

Theoretical calculations:

2019Ol02,2012Re11,2011Sr04: calculated levels, J, π.

2015Gu18: calculated negative-parity yrast band, high-spin states, B(E2), B(M1).

⁶⁵Co Levels

Cross Reference (XREF) Flags

A	65 Fe β^{-} decay (0.805 s)	D	238 U(64 Ni,X γ)
В	65 Fe β^{-} decay (1.12 s)	Е	238 U(70 Zn,x γ)
C	$^{64}Ni(^{238}U,X\gamma)$		

E(level) ^{†‡}	J^{π}	$T_{1/2}^{a}$	XREF	Comments
0.0 ^b	$(7/2)^{-}$	1.16 s <i>3</i>	ABCDE	$\%\beta^{-}=100$
				J^{π} : strong allowed β^- feeding to 5/2 ⁻ g.s. in ⁶⁵ Ni; systematics of ⁶¹ Co and ⁶³ Co and shell-model predictions prefer 7/2 ⁻ .
				$T_{1/2}$: weighted average of 1.00 s <i>15</i> (2009Pa16), 1.12 s <i>25</i> (1994Cz02), 1.14 s <i>3</i> (1988Bo06), and 1.25 s <i>5</i> (1985Ru05).
882.69 7	$(3/2^{-})$	4 ps 4	A CDE	XREF: C(883?)
				J^{π} : β^{-} feeding from (1/2 ⁻) parent, less likely to be 1st forbidden unique or higher-order ($\Delta J \ge 2$); 882.65 γ to (7/2) ⁻ .
1095.34 8	(1/2 ⁻)	1.250 ns 20	A D	J^{π} : proposed by 2009Pa16 in ⁶⁵ Fe β^- decay (0.805 s), based on analogy to the (1/2 ⁻) proton intruder state at E=492 keV in ⁶⁷ Co observed in 2008Pa33 of the same author, and on the fact that no γ transition is observed to (7/2) ⁻ ground state. But 2009Pa16 also state that (3/2 ⁻) cannot be disregarded.
1222.76 7	(3/2 ⁻)	55 ps 6	A DE	J^{π} : E2 or M2 ruled out by RUL for 127.3 γ to 1095 level if J(1095)=1/2 ⁻ ; 1222.8 γ to (7/2) ⁻ .
1441.1 <i>4</i>	$(5/2^{-},7/2^{-})^{@}$		В	
1479.4 ^b 2	(11/2) ^{-#}	0.9 ps 4	BCDE	XREF: C(1479?) J^{π} : 1479.4 γ E2, ΔJ =2 to (7/2) ⁻ .

Continued on next page (footnotes at end of table)

Adopted Levels, Gammas (continued)

⁶⁵Co Levels (continued)

E(level) ^{†‡}	J^{π}	$T_{1/2}^{a}$	XREF	Comments
				$T_{1/2}$: from Recoil-Distance Doppler-Shift (RDDS) method in (⁶⁴ Ni,X γ) (2013Mo36).
1557.47 7	$(3/2^{-}, 5/2, 7/2^{-})$		Α	J^{π} : 674.9 γ to (3/2 ⁻), 1557.4 γ to (7/2) ⁻ .
1625.5 4	$(5/2^{-},7/2^{-})^{@}$		В	
1642.1 2	$(9/2^{-})^{\#}$		B DE	
1948.20 12			Α	
1959.13 8	(3/2 ⁻)	<90 ps	A D	J ^{π} : possible strong allowed β^- feeding from (1/2 ⁻) parent; 1958.8 γ to (7/2) ⁻ .
1996.52 6	(3/2 ⁻)	<90 ps	A D	J ^{π} : possible strong allowed β^- feeding from (1/2 ⁻) parent; 1996.5 γ to (7/2) ⁻ .
2183.83 <i>11</i> 2276.07 <i>12</i>	$(1/2^-, 3/2^-)$	<160 ps	AD A	J^{π} : possibly allowed β^- feeding from (1/2 ⁻) parent.
2443.4 4			В	
2470.12 12	$(3/2^-, 5/2, 7/2^-)$		Α	J^{π} : 1587.4 γ to (3/2 ⁻), 2470.4 γ to (7/2) ⁻ .
2479.2 ⁶ 2	$(11/2^{-})$		BCDE	XREF: C(2479?)
				J ^{π} : proposed in 2009Pa16 in ⁶⁵ Fe β^- decay (1.12 s) based on systematics of yrast and near-yrast levels in neighboring ⁶¹ Co and ⁶³ Co. But possibly allowed β^- feeding from (9/2 ⁺) parent would suggest π =+. As also noted in 2009Pa16, their reported values of β^- feedings are upper limits due to the possibility of unobserved γ -ray activity from high-energy level.
2557.6 3	$(7/2^+, 9/2^+)$		В	J ^{π} : possibly allowed β^{-} feeding from (9/2 ⁺) parent; 2557.5 γ to (7/2) ⁻ .
2669.4 ^b 2	(13/2 ⁻)	0.6 ps 4	DE	J^{π} : 190.2 γ D, ΔJ =1 to (11/2 ⁻); (13/2 ⁻) from systematics of ⁶¹ Co and ⁶³ Co, and shell-model predictions (2009Pa16). T _{1/2} : from Recoil-Distance Doppler-Shift (RDDS) method in (⁶⁴ Ni,X γ) (2013Ma26)
2891.9.3	$(9/2^+, 11/2^+)$		ВD	I^{π} : possibly allowed β^{-} feeding from (9/2 ⁺) parent: 412.9 γ to (11/2 ⁻).
2896.1 4	$(7/2,9/2,11/2^{-})$		B	J^{π} : possibly β^{-} feeding from (9/2 ⁺) parent, less likely to be 1st forbidden unique or higher order (λ J>2): 2896.0v to (7/2) ⁻ .
2926.3 <i>3</i>			D	
3028.7 ^b 3	$(15/2^{-})^{\&}$		DE	
3271.5 ^b 4	$(15/2^{-}, 17/2^{+})^{\&}$		DE	

[†] Additional information 2.

[‡] From a least-squares fit to γ -ray energies.

[#] Proposed by 2012Re11 in (⁷⁰Zn,X γ) for 1479 and 1642 levels, based on their measured $\gamma(\theta)$ and shell-model predictions. Note that the assignments are inverse in 2009Pa16 in their decay scheme of ⁶⁵Fe β^- decay (1.12 s), mainly based on systematics of neighboring odd-A Co isotopes. 2012Re11 claim that from their data, the intensity ratio of the 1480 γ and 1643 γ is completely different from those for corresponding transitions in ⁶¹Co and ⁶³Co, which, together with measured R_{asym} of 1480 γ suggesting Δ J=2, indicates a spin-parity inversion for the two levels as members of the $\pi f_{7/2}^{-1} \otimes 2^+$ (⁶⁶Ni) multiplet, compared to

spin-parities of correspdoning levels in ⁶¹Co and ⁶³Co.

^(a) From shell-model predictions, 2009Pa16 assign 1441 and 1626 levels as the candidates for the $5/2^-$ and $7/2^-$ members of the $\pi f_{7/2}^{-1} \otimes 2^+$ multiplet, while 1479 and 1642 levels have been assigned as the (9/2⁻) and (11/2⁻) member, respectively, from systematics of ⁵⁹Co, ⁶¹Co and ⁶⁴Co. The assignments of 1479 and 1642 levels are inverse based on a later study by 2012Re11. See more comments at those levels.

^{*a*} From $\beta\gamma(t)$ or $\beta\gamma\gamma(t)$ in ⁶⁵Fe β^- decay (0.805 s) (2019Ol02) for excited levels, unless otherwise noted.

^b Seq.(A): Sequence based on g.s.

[&] Proposed by 2009Pa16 based on systematics of ⁶¹Co and ⁶³Co, and shell-model predictions (2009Pa16).

$\gamma(^{65}\text{Co})$

Additional information 3.

ω

E _i (level)	\mathbf{J}_i^π	${\rm E_{\gamma}}^{\ddagger}$	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
882.69	(3/2 ⁻)	882.65 15	100	0.0 (7	7/2)-	[E2]	0.000296 4	$\alpha(K)=0.000267 \ 4; \ \alpha(L)=2.59\times10^{-5} \ 4; \ \alpha(M)=3.60\times10^{-6} \ 5 \ \alpha(N)=1.599\times10^{-7} \ 22 \ B(E2)(W.u.)>8.5 \ E = 10000000000000000000000000000000000$
1095.34	(1/2 ⁻)	212.7 1	100	882.69 (3	3/2-)	[M1,E2]	0.018 12	E _{γ} : other: 882.3 / from (¹⁷ Zn,x γ). α (K)=0.016 <i>11</i> ; α (L)=0.0016 <i>11</i> ; α (M)=2.3×10 ⁻⁴ <i>15</i> α (N)=9
1222.76	(3/2 ⁻)	127.3 <i>I</i>	4.6 4	1095.34 (1	1/2-)	[M1]	0.02147 30	B(M1)(W.u.)=0.001820 30 if M1, B(E2)(W.u.)=65.1 11 if E2. $\alpha(K)$ =0.01926 27; $\alpha(L)$ =0.001924 27; $\alpha(M)$ =0.000268 4 $\alpha(N)$ =1.171×10 ⁻⁵ 17 B(M1)(W.u.)=0.00591 +90-77
		340.10 6	100 4	882.69 (3	3/2-)	[M1,E2]	0.0037 18	$\begin{aligned} \alpha(\text{M}) &= 0.0033 \ 16; \ \alpha(\text{L}) &= 3.2 \times 10^{-4} \ 16; \ \alpha(\text{M}) &= 4.5 \times 10^{-5} \ 22 \\ \alpha(\text{N}) &= 1.9 \times 10^{-6} \ 9 \\ \text{E}_{\gamma}: \text{ other: } 340.7 \ 7 \ \text{from } (^{70}\text{Zn},\text{x}\gamma). \\ \text{B}(\text{M}1)(\text{W.u.}) &= 0.00674 \ +83-70 \ \text{if } \text{M}1, \ \text{B}(\text{E2})(\text{W.u.}) &= 96 \ +12-10 \ \text{if } \\ \text{From } \\ \text{From } \end{aligned}$
		1222.8 <i>I</i>	46 4	0.0 (7	7/2)-	[E2]	0.0001496 21	E2. $\alpha(K)=0.0001234 \ 17; \ \alpha(L)=1.189\times10^{-5} \ 17; \ \alpha(M)=1.658\times10^{-6} \ 23$ $\alpha(N)=7.40\times10^{-8} \ 10; \ \alpha(IPF)=1.258\times10^{-5} \ 18$ B(E2)(W.u.)=0.074 +10-9
1441.1	$(5/2^{-},7/2^{-})$	1441.1 <i>4</i>	100	0.0 (7	7/2)-			
1479.4	(11/2)-	1479.4 2	100	0.0 (7	7/2)-	E2	0.0001710 24	$ α(K)=8.24\times10^{-5} 12; α(L)=7.92\times10^{-6} 11; α(M)=1.104\times10^{-6} 15 $ $α(N)=4.94\times10^{-8} 7; α(IPF)=7.96\times10^{-5} 11$ B(E2)(W.u.)=5.7 +43-18 E _γ : weighted average of 1479.5 2 from ⁶⁵ Fe β ⁻ decay (1.12 s), 1479.2 2 from (⁶⁴ Ni,Xγ), and 1479.5 3 from (⁷⁰ Zn,xγ). Mult.: Q, ΔJ=2 from γ(θ) in (⁷⁰ Zn,xγ); M2 ruled out by RUL.
1557.47	(3/2 ⁻ ,5/2,7/2 ⁻)	674.9 <i>1</i> 1557.4 <i>1</i>	57 5 100 9	882.69 (3 0.0 (7	3/2 ⁻) 7/2) ⁻			
1625.5	$(5/2^{-},7/2^{-})$	1625.5 4	100	0.0 (7	7/2)-			
1642.1	(9/2 ⁻)	1642.0 2	100	0.0 (7	7/2)-			E _γ : from (⁶⁴ Ni,Xγ). Others: 1641.9 <i>3</i> from ⁶⁵ Fe β^- decay (1.12 s) and 1642.8 7 from (⁷⁰ Zn,xγ).
1948.20		1065.5 <i>1</i>	100	882.69 (3	3/2-)			
1959.13	(3/2 ⁻)	736.4 1	100 8	1222.76 (3	3/2-)	[M1,E2]	0.00040 7	$\alpha(K)=0.00036\ 7;\ \alpha(L)=3.5\times10^{-5}\ 7;\ \alpha(M)=4.9\times10^{-6}\ 9$ $\alpha(N)=2.2\times10^{-7}\ 4$ B(M1)(W n)>3 8×10 ⁻⁴ if M1 B(E2)(W n)>1.2 if E2
		863.9 1	5.8 4	1095.34 (1	1/2-)	[M1,E2]	0.00028 4	$\alpha(K) = 0.000248 \ 34; \ \alpha(L) = 2.40 \times 10^{-5} \ 34; \ \alpha(M) = 3.3 \times 10^{-6} \ 5$

Adopted Levels, Gammas (continued)								
E _i (level)	\mathbf{J}_i^π	E_{γ}^{\ddagger}	I_{γ}^{\ddagger}	E_f	\mathbf{J}_f^{π}	Mult.	α^{\dagger}	Comments
1959.13	(3/2 ⁻)	1076.3 <i>1</i>	44 5	882.69	(3/2 ⁻)	[M1,E2]	0.000168 <i>15</i>	$\alpha(N)=1.49\times10^{-7}\ 20$ B(M1)(W.u.)>1.2×10 ⁻⁵ if M1, B(E2)(W.u.)>0.028 if E2. $\alpha(K)=0.000151\ 14;\ \alpha(L)=1.46\times10^{-5}\ 13;\ \alpha(M)=2.03\times10^{-6}$ 19 CD = 0.1×10 ⁻⁸ 9
		1958.8 <i>5</i>	1.7 4	0.0	(7/2)-	[E2]	0.000345 5	$\begin{array}{l} \alpha(N) = 9.1 \times 10^{-8} 8 \\ B(M1)(W.u.) > 4.9 \times 10^{-5} \text{ if } M1, B(E2)(W.u.) > 0.07 \text{ if } E2. \\ \alpha(K) = 4.78 \times 10^{-5} 7; \ \alpha(L) = 4.58 \times 10^{-6} 6; \ \alpha(M) = 6.39 \times 10^{-7} 9 \\ \alpha(N) = 2.87 \times 10^{-8} 4; \ \alpha(IPF) = 0.000292 4 \\ B(E2)(W.u.) > 1.1 \times 10^{-4} \end{array}$
1996.52	(3/2 ⁻)	439.1 <i>1</i>	4.47 26	1557.47	$(3/2^{-}, 5/2, 7/2^{-})$		0.00026.6	$(U) = 0.00022 = 5 + (U) = 2.1 \times 10^{-5} = 5 + (U) = 4.4 \times 10^{-6} = 7$
		//3.8 1	12.1 8	1222.70	(3/2)	[NI1,E2]	0.00036 0	$\alpha(\mathbf{K})=0.00032$ 5; $\alpha(\mathbf{L})=3.1\times10^{-5}$ 5; $\alpha(\mathbf{M})=4.4\times10^{-7}$ $\alpha(\mathbf{N})=1.94\times10^{-7}$ 32
		901.2 <i>l</i>	2.37 26	1095.34	(1/2 ⁻)	[M1,E2]	0.000250 32	B(M1)(W.u.)> 3.5×10^{-5} if M1, B(E2)(W.u.)> 0.097 if E2. α (K)= 0.000225 28; α (L)= 2.17×10^{-5} 28; α (M)= 3.0×10^{-6} 4 α (N)= 1.35×10^{-7} 17
		1113.7 <i>1</i>	36.8 26	882.69	(3/2 ⁻)	[M1,E2]	0.000157 13	B(M1)(W.u.)>4.1×10 ⁻⁶ if M1, B(E2)(W.u.)>0.0084 if E2. α (K)=0.000141 <i>12</i> ; α (L)=1.35×10 ⁻⁵ <i>12</i> ; α (M)=1.89×10 ⁻⁶ <i>16</i>
		1996.5 <i>1</i>	100 11	0.0	(7/2)-	[E2]	0.000362 5	$\begin{aligned} &\alpha(N) = 8.4 \times 10^{-6} \ 7; \ \alpha(IPF) = 1.10 \times 10^{-6} \ 21 \\ &B(M1)(W.u.) > 3.7 \times 10^{-5} \ \text{if } M1, \ B(E2)(W.u.) > 0.049 \ \text{if } E2. \\ &\alpha(K) = 4.62 \times 10^{-5} \ 6; \ \alpha(L) = 4.42 \times 10^{-6} \ 6; \ \alpha(M) = 6.17 \times 10^{-7} \ 9 \\ &\alpha(N) = 2.77 \times 10^{-8} \ 4; \ \alpha(IPF) = 0.000310 \ 4 \\ &B(E2)(W.u.) > 0.0076 \end{aligned}$
2183.83	$(1/2^-, 3/2^-)$	626.4 2 060 8 3	2.9 7 100 <i>14</i>	1557.47	$(3/2^{-}, 5/2, 7/2^{-})$	[M1 E2]	0.000216.24	$\alpha(\mathbf{K}) = 0.000104.22$; $\alpha(\mathbf{L}) = 1.88 \times 10^{-5}.22$; $\alpha(\mathbf{M}) = 2.62 \times 10^{-6}$
		900.8 5	100 14	1222.70	(3/2)	[111,12]	0.000210 24	$a(\mathbf{N}) = 0.000194 22, a(\mathbf{L}) = 1.00 \times 10^{-2} 22, a(\mathbf{M}) = 2.02 \times 10^{-3} 30$ $a(\mathbf{N}) = 1.17 \times 10^{-7} 13$ $B(\mathbf{M})(\mathbf{W} _{\mathbf{N}}) > 1.1 \times 10^{-4} \text{ if } \mathbf{M}1 \ B(\mathbf{F}2)(\mathbf{W} _{\mathbf{N}}) > 0.2 \text{ if } \mathbf{F}2$
		1088.5 <i>1</i>	26.4 22	1095.34	(1/2 ⁻)	[M1,E2]	0.000164 15	$\alpha(\mathbf{K})=0.000148 \ I3; \ \alpha(\mathbf{L})=1.42\times10^{-5} \ I3; \ \alpha(\mathbf{M})=1.98\times10^{-6} \ I8 \ \alpha(\mathbf{M})=8.0\times10^{-8} \ 8$
								$a(1V)=8.9\times10^{-5}$ of M1, B(E2)(W.u.)>0.025 if E2.
2276.07		1053.3 <i>1</i>	100	1222.76	$(3/2^{-})$			
2443.4 2470.12	$(3/2^{-}, 5/2, 7/2^{-})$	244 <i>3.3 4</i> 1587 4 <i>1</i>	100 100 6	0.0 882.69	(1/2) $(3/2^{-})$			
2170.12	(3/2 ,3/2,7/2)	2470.4 5	31 6	0.0	$(7/2)^{-}$			
2479.2	(11/2 ⁻)	836.9 <i>3</i>	57 14	1642.1	(9/2 ⁻)			E_{γ} : weighted average of 836.6 2 from ⁶⁵ Fe β ⁻ decay (1.12 s) and 837.1 2 from (⁶⁴ Ni,Xγ).

4

⁶⁵₂₇Co₃₈-4

Adopted Levels, Gammas (continued)										
γ (⁶⁵ Co) (continued)										
E _i (level)	\mathbf{J}_i^{π}	Eγ‡	I_{γ}^{\ddagger}	E_f	\mathbf{J}_{f}^{π}	Mult.	α^{\dagger}	Comments		
2479.2	(11/2 ⁻)	999.9 [#] 2	100 [#] 8	1479.4	(11/2)-			I _γ : weighted average of 78 <i>17</i> from ⁶⁵ Fe β ⁻ decay (1.12 s) and 48 <i>11</i> from (⁶⁴ Ni,Xγ). E _γ : others: 999.7 <i>3</i> from ⁶⁵ Fe β ⁻ decay (1.12 s) and 1000.4 <i>6</i> from (⁷⁰ Zn,xγ). L: other: 100 <i>11</i> from ⁶⁵ Fe β ⁻ decay (1.12 s)		
2557.6	$(7/2^+ 9/2^+)$	2557 5 3	100	0.0	$(7/2)^{-}$			1_{γ} . other. 100 11 from 1 c p decay (1.12 s).		
2669.4	(13/2 ⁻)	190.2 2	41 5	2479.2	$(11/2^{-})$	(M1)	0.00766 11	α (K)=0.00688 <i>10</i> ; α (L)=0.000681 <i>10</i> ; α (M)=9.50×10 ⁻⁵ <i>14</i> α (N)=4.18×10 ⁻⁶ 6 B(M1)(W.u.)=1.6 + <i>17</i> -7		
								E _{γ} : weighted average of 190.1 2 from (⁶⁴ Ni,X γ) and 190.5 3 from (⁷⁰ Zn,x γ).		
								I _{γ} : weighted average of 38 7 from (⁶⁴ Ni,X γ) and 43 5 from (⁷⁰ Zn,x γ).		
								Mult.: D, $\Delta J=1$ from $\gamma(\theta)$ in (⁷⁰ Zn,x γ); $\Delta \pi=(no)$ from level scheme.		
								B(M1)(W.u.)=1.6 + 17-7 upper bound exceeds RUL=3.		
		1190.0# 2	100# 8	1479.4	(11/2)-	[M1,E2]	0.000142 11	$\alpha(K)=0.000122 \ 9; \ \alpha(L)=1.18\times10^{-5} \ 9; \ \alpha(M)=1.64\times10^{-6} \ 12$ $\alpha(N)=7.3\times10^{-8} \ 5; \ \alpha(IPF)=6.4\times10^{-6} \ 11$		
								E_{γ},I_{γ} : Other: 1190.5 9 with I_{γ} =100 14 from (⁷⁰ Zn,x γ). B(M1)(W.u.)=0.015 +16-6 if M1, B(E2)(W.u.)=18 +19-8 if E2.		
2891.9	$(9/2^+, 11/2^+)$	412.9 [#] 5	12 6	2479.2	$(11/2^{-})$			E_{γ} : other: 413.0 <i>10</i> from ⁶⁵ Fe β^{-} decay (1.12 s).		
		1412.5 2	100 14	1479.4	$(11/2)^{-}$			E_{γ} : not seen in (⁶⁴ Ni,X γ).		
2896.1	$(7/2, 9/2, 11/2^{-})$	2896.0 4	100	0.0	$(7/2)^{-}$					
2926.3		447.1 ^{#} 2	100	2479.2	$(11/2^{-})$					
3028.7	(15/2 ⁻)	359.3 2	100	2669.4	(13/2 ⁻)			E _{γ} : weighted average of 359.2 2 from (⁶⁴ Ni,X γ) and 359.3 2 from (⁷⁰ Zn,x γ).		
3271.5	$(15/2^-, 17/2^+)$	242.8 [#] 2	100	3028.7	$(15/2^{-})$			E_{γ} : other: 242.7 2 from (⁷⁰ Zn,x γ).		

[†] Additional information 4. [‡] From ⁶⁵Fe β^- decay (0.805 s) or ⁶⁵Fe β^- decay (1.16 s) (2009Pa16), unless otherwise noted. [#] From ²³⁸U(⁶⁴Ni,X γ).

S

Adopted Levels, Gammas

Level Scheme Intensities: Relative photon branching from each level

⁶⁵₂₇Co₃₈

Adopted Levels, Gammas

⁶⁵₂₇Co₃₈