238 U(70 Zn,x γ) **2012Re11**

		History		
Type	Author	Citation	Literature Cutoff Date	
Full Evaluation	Jun Chen	NDS 202,59 (2025)	25-Feb-2025	

Adapted from the XUNDL dataset for 2012Re11, compiled by E. Thiagalingam and B. Singh (McMaster) on June 14, 2012. 2012Re11: E=460 MeV 70 Zn beam was produced from the Laboratori Nazionali di Legnaro (LNL) Tandem-ALPI accelerator complex. Target was 400 μ g/cm 2 238 U. Projectile-like nuclei were detected and identified by the large-acceptance magnetic spectrometer PRISMA. γ rays were detected with the CLARA array consisting of 22 Compton-suppressed Ge clover detectors. Measured E γ , I γ , γ (θ), $\gamma\gamma$ -coin, γ -coin. Deduced levels, J, γ , configurations. Comparison with large-scale shell-model calculations. See also 2012Re24 and 2012Re16.

65Co Levels

E(level) ^{†‡}	$J^{\pi \#}$
0.0	(7/2-)
882.3 7	$(3/2^{-})^{\&}$
1223.0 10	$(3/2^{-})^{\&}$
1479.5 <i>3</i>	$(11/2^{-})^{@}$
1642.8 7	$(9/2^{-})^{@}$
2479.8 <i>6</i>	$(11/2^{-})$
2670.3 <i>6</i>	$(13/2^{-})$
3029.6 7	$(15/2^{-})$
3272.3 7	$(15/2^-, 17/2^+)$

[†] Additional information 1.

γ	('))	(C))
_					

E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_i(level)$	$_J_i^\pi$	\mathbb{E}_f	\mathbf{J}_f^{π}	Mult.‡	Comments
^x 76.7 4	60 6						
190.5 <i>3</i>	9 1	2670.3	$(13/2^{-})$	2479.8	$(11/2^{-})$	D	R _{asym} =0.67 29.
242.7 2	15 2	3272.3	$(15/2^-, 17/2^+)$	3029.6	$(15/2^{-})$		$R_{asym} = 0.94 \ 26.$
^x 272.4 5	10 2						·
x325.6 3	17 2						
340.7 7	7 2	1223.0	$(3/2^{-})$	882.3	$(3/2^{-})$		
359.3 2	18 2	3029.6	$(15/2^{-})$	2670.3	$(13/2^{-})$		
^x 379.7 4	18 2						
^x 430.1 6	6 2						
882.3 7	21 5	882.3	$(3/2^{-})$	0.0	$(7/2^{-})$		
1000.4 6	16 <i>3</i>	2479.8	$(11/2^{-})$	1479.5	$(11/2^{-})$		
1190.5 9	21 3	2670.3	$(13/2^{-})$	1479.5	$(11/2^{-})$		

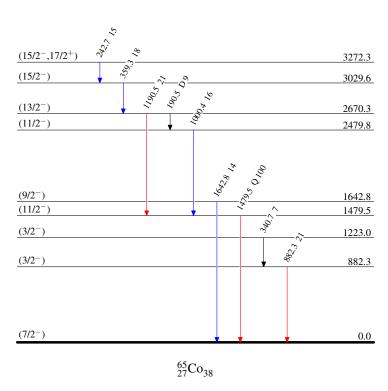
 $^{^{\}ddagger}$ From a least-squares fit to γ -ray energies.

[#] As proposed in 2012Re11, based on their measured $\gamma(\theta)$ and shell-model predictions, unless otherwise noted.

[®] Assignments for 1480 and 1643 levels are inverse in 2009Pa16 in their decay scheme of 65 Fe β^- decay (1.12 s). 2012Re11 argue that those assignments by 2009Pa16 are mainly based on systematics of neighboring odd-A Co isotopes, but from data in this work, the intensity ratio of the 1480 γ and 1643 γ is completely different from those for corresponding transitions in 61 Co and 63 Co, which, together with measured R_{asym} of 1480 γ suggesting Δ J=2, indicates a spin-parity inversion for the two levels as members of the π f $_{7/2}^{-1}$ 2+(66 Ni) multiplet, compared to spin-parities of corresponding levels in 61 Co and 63 Co. 2012Re11 also show that their assignments are consistent with the predictions from the large-scale shell-model calculations using the LNPS interaction proposed in 2010Le20.

[&]amp; From Adopted Levels. No assignment in 2012Re11.

²³⁸U(⁷⁰Zn,xγ) **2012Re11** (continued)


γ (65Co) (continued)

E_{γ}^{\dagger}	I_{γ}^{\dagger}	$E_i(level)$	\mathbf{J}_i^{π}	\mathbf{E}_f	J_f^π	Mult.‡	Comments
1479.5 3	100 5	1479.5	$\overline{(11/2^{-})}$	0.0	$(7/2^{-})$	Q	R _{asym} =1.19 14.
1642.8 7	14 3	1642.8	$(9/2^{-})$	0.0	$(7/2^{-})$,

 $^{^{\}dagger}$ From 2012Re11.

 $^{^{}x}$ γ ray not placed in level scheme.

 $^{^{\}ddagger}$ Deduced by the evaluator based on R_{asym} in 2012Re11, as given under comments. Expected R_{asym} values are ≈0.8 for stretched dipole transition (ΔJ=1) and ≈1.2 or larger for stretched quadrupole transition (ΔJ=2).