Adopted Levels, Gammas

		History	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Jun Chen	NDS 202,59 (2025)	25-Feb-2025

 $Q(\beta^{-}) = -13920 \text{ syst}; S(n) = 15.17 \times 10^{3} 12; S(p) = -221 42; Q(\alpha) = -2063 47$ 2021Wa16 $\Delta Q(\beta^{-}) = 310 \text{ (syst}, 2021Wa16).$

- $S(n),S(p),Q(\alpha)$: Deduced by the evaluator using mass excesses of -46806 42 for ⁶⁵As, -39710 110 for ⁶⁴As, and -47168 21 for ⁶¹Ga measured by 2023Wa10, and -54316 4 for ⁶⁴Ge from 2021Wa16. Values from 2021Wa16: S(n)=15480 220 (syst), S(p)=-90 80, $Q(\alpha)=-2230$ 90.
- $S(2p)=4837\ 42,\ Q(\varepsilon)=9672\ 42,\ Q(\varepsilon p)=4738\ 42,\ from mass excesses of \ ^{65}As measured by 2022Si20, and -56547.1\ 13\ for \ ^{63}Ga, -56478.2\ 22\ for \ ^{65}Ge,\ and -58832.8\ 14\ for \ ^{64}Ge\ from\ 2021Wa16.$ Values from 2021Wa16: $S(2p)=4970\ 80,\ Q(\varepsilon)=9540\ 80,\ Q(\varepsilon p)=4610\ 80.$

S(2n)=29580 220 (syst).

Mass measurements: 2023Wa10 (M.E.=-46806 42), 2011Tu02 (M.E.=-46937 85).

2023Wa10: ⁶⁵As was produced in ⁹Be(⁷⁸Kr,X) with E=460 MeV/nucleon ⁷⁸Kr beam from the accelerator at the Heavy Ion Research Facility in Lanzhou (HIRFL). Fragments were separated by the RIBLL2 separator and injected into the experimental cooler storage ring (CSRe). Measured time-of-flight. Deduced mass excess.

2017GoZT (thesis; also 2020Gi02): ⁶⁵As was produced in the fragmentation of a 350 MeV/nucleon ⁷⁸Kr beam at RIKEN. Fragments were identified and selected by the BigRIPS and the ZDS separators, and implanted into the WAS3ABi device consisting of 3 DSSSDs, surrounded by the EURICA array of Ge detectors for γ -ray detection. Measured E(p), I(p), implant-decay time correlations, E γ . Deduced T_{1/2}.

- 2011Tu02 (also 2011ZhZV): ⁹Be(⁷⁸Kr,X) E=483.4 MeV/nucleon at HIRFL. Measured time-of-flight. Deduced mass excess. Additional information 1.
- 2014Ro14: ⁶⁵As was produced in the fragmentation of 70 MeV/nucleon ⁷⁸Kr beam with Ni target at GANIL. Fragments were selected with the LISE3 separator and identified by time-of-flight and energy loss. Measured half-life of ⁶⁵As ground-state decay by (fragment) β , (fragment) γ correlations using set of four Si detectors (an energy loss ΔE detector, a degrade, DSSD and Si(Li)) for particles surrounded by four HPGe Clover detectors, three EXOGAM and one mini-clover Ge detector for γ rays.

2002Lo13,2002B117: ⁶⁵As was produced by fragmentation of 73 MeV/nucleon ⁷⁸Kr beam at GANIL. Measured implant- β (t). Deduced T_{1/2}.

1993Wi03: ⁶⁵As was produced by fragmentation of 75 MeV/nucleon ⁷⁸Kr beam by an enriched ⁵⁸Ni target and mass separation at NSCL. Measured $T_{1/2}$.

1991Mo10: ⁶⁵As was produced by fragmentation of 65 MeV/nucleon ⁷⁸Kr beam on an enriched ⁵⁸Ni target at NSCL. First observation of ⁶⁵As as recognized in 2010Sh34 compilation of isotope discovery.

1991XuZZ: ⁶⁵As was produced by fragmentation of 20 MeV/nucleon ⁶⁴Zn beam incident on a Be target and mass separation at RIKEN; claims to be first identification of ⁶⁵As; no other data.
1990Ro15: search for proton radioactivity of ⁶⁵As was made with ⁴⁰Ca(³²S,αp2n) at E(³²S)=200 MeV and ⁴⁰Ca(²⁸Si,p2n) at

- 1990Ro15: search for proton radioactivity of ⁶⁵As was made with ⁴⁰Ca(³²S, α p2n) at E(³²S)=200 MeV and ⁴⁰Ca(²⁸Si,p2n) at E(²⁸Si)=175 MeV and mass separation at LBNL. No such activity was observed in the proton energy range of 200-700 keV. Authors conclude that ⁶⁵As must decay mostly by positron emission or by proton emission with T_{1/2} < 100 μ s.
- 1989Ho19: search for proton radioactivity of ⁶⁵As was made with ⁴⁰Ca(²⁸Si,p2n) at E(²⁸Si)=87 MeV and mass separation at Orsay. They looked for proton radioactivity in the energy range 250-600 keV and half-life of 10 μ s to 100 ms. No such activity was observed and the authors established a lower production cross section limit of 1×10⁻⁶ barn.
- 1988HoZL, 1989HoZQ: search for proton radioactivity of 65 As was made with 40 Ca(28 Si,p2n) at E(28 Si)=140 MeV and separation of reaction products with a mass analyzer at Daresbury. No evidence was found for proton decay of 65 As; the authors conclude that 65 As decays predominantly by positron emission with a weak proton decay branch or its half-life is less than 5 μ s which is below the detection capability of their equipment.

Theoretical calculations:

2022Zo01,2021Ma33,2021Kl02,2019Zo02: calculated S(p), S(2p), mass excess.

2021Qu01: calculated resonant states of 64 Ge(p, γ).

2017Ni16: calculated nuclear radius, single-particle energies.

2014Bh16,2012Bh10: calculated binding energy, mass, S(p).

2013Co23: calculated levels, J, π , spectroscopic quadrupole moments.

2003Mi23: calculated binding energy, quadrupole deformation.

2001Pa02: calculated ground-state J, π , binding energy, deformation parameter, radius, S(p).

1

Adopted Levels, Gammas (continued)

⁶⁵As Levels

Cross Reference (XREF) Flags

⁶⁵Se ε+β⁺ decay (34.2 ms) ⁹Be(⁶⁷As,⁶⁵Asγ) A

В

E(level)	J^{π}	T _{1/2}	XREF	Comments
0.0	(3/2 ⁻) [†]	130.3 ms 6	AB	$\% \varepsilon + \% \beta^+ = 100$ $\% \varepsilon + \% \beta^+$: no evidence of ground state proton decay was found by 1993Wi03,1989Ho19. Relativistic mean field model predict stable against p emission (2001Pa02).
				T _{1/2} : from implant-decay time correlation (2017GoZT,2020Gi02). Others: 126 ms 7 (2014Ro14), 126 ms <i>16</i> (2002Lo13,2002B117), 190 ms + <i>110</i> -70 (1993Wi03,1993Wi18,1993Wi03). Additional information 2.
187 <i>3</i> 3310 <i>45</i>	(5/2 ⁻) [†] (3/2 ⁻)	0.27 ns <i>14</i>	B A	 %p=100 E(level): from ⁶⁵Se ε+β⁺ decay, deduced from measured energies of emitted protons and adopted S(p)=-221 42. J^π: IAS of ⁶⁵Se (3/2⁻) g.s. Decays to ⁶⁴Ge by proton emissions: E(p0)(c.m.)=3523 16 to ⁶⁴Ge g.s. and E(p1)(c.m.)=2638 15 to 901, 2⁺ level in ⁶⁴Ge. See ⁶⁵Se ε+β⁺ decay for more details about proton emissions.

[†] From calculations using D1S Gogny interactions and shell-model approach using the JUN45 interactions predict oblate-deformed shape (2011Ob02). The ordering of $3/2^-$ and $5/2^-$ states is tentative.

 $\gamma(^{65}As)$

Additional information 3.

E_i (level)	\mathbf{J}_i^{π}	E_{γ}	I_{γ}	$\mathbf{E}_f = \mathbf{J}_f^{\pi}$	Mult.	α^{\dagger}	Comments
187	(5/2 ⁻)	187 3	100	0.0 (3/2	-) [M1]	0.0171 8	$\begin{aligned} &\alpha(\text{K}) = 0.0152 \ 7; \ \alpha(\text{L}) = 0.00162 \ 7; \ \alpha(\text{M}) = 0.000247 \ 11 \\ &\alpha(\text{N}) = 1.88 \times 10^{-5} \ 8 \\ &\text{B}(\text{M}1)(\text{W.u.}) = 0.012 \ +11 - 5 \\ &\text{E}_{\gamma}: \ \text{from} \ ^{9}\text{Be}(^{67}\text{As},^{65}\text{As}\gamma) \ (2011\text{Ob}02). \end{aligned}$

[†] Additional information 4.

Adopted Levels, Gammas

Level Scheme

Intensities: Relative photon branching from each level

