⁶⁴Zn(*α*,*α'*) 1988Ba71,1970Al16,2019Bu26

History									
Туре	Author	Citation	Literature Cutoff Date						
Full Evaluation	Balraj Singh and Jun Chen	NDS 178, 41 (2021).	12-Nov-2021						

Includes (α, α) .

1988Ba71: E=25 MeV, $\sigma(\theta)$, coupled-channel calculations. FWHM=100-200 keV. Data for eight levels up to 3 MeV. See also 1982En04 for 64 Zn(α, α) E=25 MeV.

1970A116: E=31 MeV; FWHM=80-120 keV, $\sigma(\theta)$ from 15° to 65°, DWBA calculations, deduced β and βR .

2019Bu26: E=240 MeV α particles were produced from the Texas A&M K500 superconducting cyclotron. Target was an enriched (>95%) 6.4 mg/cm² ⁶⁴Zn foil. Scattered particles were momentum-analyzed with the multipole-dipole-multipole (MDM) spectrometer. Measured $\sigma(E_{\alpha},\theta)$, strength distributions. Deduced centroid energies, widths, and fractions of energy weighted sum rule (EWSR) for isoscalar giant monopole (ISGMR), dipole (ISGDR) and quadrupole (ISGQR) resonances from DWBA analysis and Gaussian fits. Comparisons with theoretical predictions.

2016Or09: $(\alpha, \alpha), (\alpha, \alpha'), E=12.1, 16.1$ MeV. Measured $\sigma(\theta), \sigma$ for excited states, and total reaction σ . Comparison with statistical model calculations.

Other measurements:

1990Fi07: E=57 MeV.

1989Ai02: E=29-50 MeV, $\sigma(\theta)$.

1981Yo04: E=99-129 MeV.

1981Co16: E=160 MeV.

1980Lu06: E=129 MeV.

1978Ro12: E=15, 18, 19 MeV; $\sigma(\theta)$, DWBA.

1978Pi03, 1975Bo02: E=48 MeV.

1978Lu06, 1975Al06: E=18 MeV, reaction mechanism.

1975Ba77: E=29, 38, 50.5 MeV; $\sigma(\theta)$, DWBA.

1971Al11, 1968Al20, 1968Al19: E=27 MeV; $\sigma(\theta)$, DWBA.

1971Go36, 1971Go28, 1968Go35: E=40 MeV; $\sigma(\theta)$.

1970Br07: E=44 MeV; $\sigma(\theta)$.

1968Fu01 (E=21 MeV); 1965Wi04 (E=22 MeV); 1962Br37, 1961Ch21 (E=43 MeV); 1960Mc14 (E=41 MeV); 1959Fu62 (E=20 MeV).

Additional information 1.

Data for giant resonances (levels above 6 MeV) are from 2019Bu26.

⁶⁴Zn Levels

Uncertainties in values of βR and transition strengths from 1970Al16 are estimated to be about 5% (1970Al16).

E(level) [†]	\mathbf{J}^{π}	L [†]	$\beta R (fm)^{\dagger}$	Comments
0				
990 <i>30</i>		2	1.19	B(E2)=0.124-0.185 (1978Ro12); 0.11 (1968Al20); B(E2)(W.u.)=24 (1970Al16), 15.6
				(19/0BI0/). $\beta P_{\rm c}({\rm fm})$: from 1088Po71. Others: 1.07 (1088Po71), 1.2 (1070A116)
				βK (iii). from 1968Ba/1. Others. 1.07 (1968Ba/1), 1.2 (1970A110).
				$\beta_2 = 0.19 - 0.22$ (1978K012); 0.22 (1975Ba77); 0.15 (1975A134); 0.19 (1971G030); 0.22
				(19/1A111); 0.21 (19/0Br07); 0.19 (19/0A116); 0.18 (1968Go35); 0.20 (1968Fu01); 0.22
				(1965Wi04); 0.19 (1960Mc14). 1991Ku30 give $\beta_2 = -0.20$ from an analysis of (α, α') data.
				Angle integrated σ =33 mb 3 at 12.1 MeV, 28 mb 1 at 16.1 MeV (2016Or09).
1810 30		2 [@]		Angle integrated σ =3.1 mb 5 at 12.1 MeV, 0.6 mb 2 at 16.1 MeV (2016Or09).
1910	0^{+}			$E(\text{level}) I^{\pi}$: level from 20160r09.
1910	0			Angle integrated σ =10.2 mb 5 at 12.1 MeV, 13.6 mb 5 at 16.1 MeV (2016Or09).
2320 30		4 [@]		Angle integrated σ =3.2 mb 5 at 12.1 MeV, 0.9 mb I at 16.1 MeV (2016Or09).
2780 30		4	0.35	$B(E4)(W,u)=2.0, \beta_4=0.053 (1970A116).$
3020 30		3	1.01	B(E3)(W.u.)=27 (1970A116), 8.6 (1970Br07).
				βR (fm): from 1988Ba71. Other: 1.3 (1970Al16).

Continued on next page (footnotes at end of table)

 $^{24}_{30}$ Zn₃₄

E(level)

3080 30

3720 30

 \mathbf{J}^{π}

⁶⁴Zn(α,α') 1988Ba71,1970Al16,2019Bu26 (continued)

$\frac{64 \text{Zn Levels (continued)}}{\Gamma}$ $\frac{L^{\dagger}}{\Gamma}$ $\frac{\beta \text{R (fm)}^{\dagger}}{\beta_{3}=0.21 (1975 \text{Ba77}); 0.11 (1975 \text{A134}); 0.22 (1971 \text{A111}); 0.15 (1970 \text{Br07}); 0.20 (1970 \text{A116}); 0.16 (1968 \text{Go35}); 0.10 (1960 \text{Mc14}).$ $4 \quad 0.55 \quad \text{B(E4)(W.u.)=5.1, \beta_{4}=0.084 (1970 \text{A116}).}{3 \quad 0.37 \quad \text{B(E3)(W.u.)=2.2, \beta_{3}=0.057 (1970 \text{A116}).}}$ $5 \quad 0.48 \quad \text{B(E5)(W.u.)=4.3, \beta_{5}=0.074 (1970 \text{A116}).}{2 \quad 0.20 \quad \text{B(E3)(W.u.)=2.4, \beta_{3}=0.059 (1070 \text{A116}).}}$

3950 <i>30</i>					
4190 30			5	0.48	B(E5)(W.u.)=4.3, β_5 =0.074 (1970Al16).
4370 <i>30</i>			3	0.39	B(E3)(W.u.)=2.4, β_3 =0.059 (1970Al16).
4640 30					
4760? 30					
5040 45					
5370 45			3	0.29	B(E3)(W.u.)=1.3, β_3 =0.044 (1970Al16).
5800 45			5	0.28	B(E5)(W.u.)=1.4, β_5 =0.042 (1970Al16).
15.42×10 ³ ^{‡#} 94	1-	4.6 ^{‡#} MeV +16−15			E(level): 15.42 MeV +97-90 (2019Bu26).
					%EWSR=19 for E1 isoscalar giant dipole resonance
					(ISGDR) strength.
15.7×10 ³ [‡] 5	2^{+}	6.43 [‡] MeV 65			Centroid= $15.81 \times 10^3 + 35 - 27$ with %EWSR=120 13 and
					rms width= $4.7 \text{ MeV} + 22 - 18$ from experimental moments.
					%EWSR=113 for E2 isoscalar giant quadrupole resonance
					(ISGQR) strength.
18.34×10^{3} 70	0^{+}	9.21 [‡] MeV 114			Centroid= $18.5 \times 10^3 + 12 - 4$ with %EWSR= $70 + 14 - 11$ and
					rms width= $5.8 \text{ MeV} + 26 - 11$ from experimental moments.
					%EWSR=64 for E0 isoscalar giant monopole resonance
					(ISGMR) strength.
25.6×10^{3} # 12	1-	12.6 ^{‡#} MeV 32			Centroid= $23.3 \times 10^3 + 17 - 10$ with %EWSR= $108 + 27 - 20$ and
2010/110 12					rms width= $8.7 \text{ MeV} + 29 - 19$ from experimental moments.
					%EWSR=68 for E1 isoscalar giant dipole resonance
					(ISGDR) strength.

[†] From 1970Al16, unless otherwise stated. The L-transfer assignments are from comparison of $\sigma(\theta)$ distributions with DWBA calculations.

[‡] From Gaussian fits to measured strength distributions with quoted values of widths for FWHM. Values from moments of measured strength distributions are given under comments (2019Bu26).

[#] %EWSR=108 +27-20 and rms width=8.7 MeV +30-19 for the sum of two peaks with centroid energy= $23.3 \times 10^3 + 18 - 11$, from moments determined from experimental strength distributions (2019Bu26).

 $^{@}$ DWBA fit out of phase with that expected for 2^{+} and 4^{+} states.