¹²C(⁵⁴Fe,2pγ) **1994Cr05**

History						
Туре	Author	Citation	Literature Cutoff Date			
Full Evaluation	Balraj Singh and Jun Chen	NDS 178, 41 (2021).	12-Nov-2021			

1994Cr05 (also 1992En03,1991En01): $E(^{54}Fe)=155$ MeV. Measured $E\gamma$, $I\gamma$, $\gamma(\theta)$, $\gamma\gamma$ - and (recoil) γ -coin, $\gamma\gamma(\theta)$ (DCO). Cranked Nilsson-Strutinsky calculations.

1994Cr05 conclude that the low-spin states (J<8) are well reproduced by conventional shell-model calculations. The high-spin states are treated under the approximate methods of cranked Strutinsky approach. These calculations predict a well defined minimum in

the potential energy surface but the absence of a well defined rotational band above 8^+ contradicts this theoretical result. Other: 1990LiZS: $E({}^{54}Fe)=165$ MeV. Recoil- $\gamma\gamma$ data. No details available.

⁶⁴Zn Levels

E(level) [†]	$J^{\pi \ddagger}$	Comments
0.0&	0^{+}	
991.6 ^{&} 2	0 2 ⁺	
1799.3^{a} 2	$\frac{2}{2^{+}}$	
2307.1 & 2	_ 	
2737.1^{a} 2	4+	
$2000 2^{b} 3$	3-	
3078.1.3	3 4 ⁺	
$3926.6^{b}.2$	5 ⁻	
3004 4 & 3	6 ⁺	
4078.6 2	5 ⁺	
4158.5 3	5-	
4237.9 ^{<i>a</i>} 3	6+	
4636.1 <i>3</i>	7-	
4670.8 <i>3</i>	6-	
4983.1 ^b 4	7-	
5153.4 <i>3</i>	7-	
5625.6 4	8-	
5683.3 [#] 6	9-	
5701.2 <i>3</i>	(8-)	J^{π} : from the Adopted Levels.
5938.5 4	(8^+)	
6033.7 4	(8^+)	
6124.9 ^a 4	(8')	
6127.5° 4	(9-)	
6263.3 /	(0)	
7121 0 1	(0) (10^+)	
$7265.0^{@}7$	(10)	
7335.6 5	(10^{+})	
7581.9 <mark>b</mark> 4	(11 ⁻)	
7808.5 8	(10^+)	
7904.5 11	/	
7948.7 21	(10^{+})	
8159.6 21	(10^{+})	
8585.7 5	(12^{+})	
8997.9 9	(12^{+})	

[†] From a least-squares fit to $E\gamma$ data.

[‡] As proposed by 1994Cr05 based on $\gamma\gamma(\theta)$ data and band assignments, unless otherwise indicated. Most assignments are

¹²C(⁵⁴Fe,2pγ) **1994Cr05** (continued)

⁶⁴Zn Levels (continued)

consistent with the levels included in the Adopted Levels, except that some are placed in parentheses in the Adopted Levels, when strong arguments are lacking.

- [#] With the reordering of 1314-1046 cascade in the Adopted dataset based on the results of 2004Ka18, this level corresponds to 5952, (9⁻) in the Adopted Levels and 1047 γ deexcites a 6998, (11⁻) level.
- ^(a) With the reordering of 1314-1046-1583 cascade in the Adopted dataset based on the results of 2004Ka18, this level corresponds to 8581, (12⁺) level (or 8586 in this dataset) in the Adopted Levels.

& Band(A): g.s. band.

^a Band(B): Band based on 2⁺, even spins.

^b Band(C): Band based on 3⁻, odd spins.

I_{γ}^{\ddagger} E_{ν} E;(level) \mathbf{J}_i^{π} \mathbf{E}_{f} J_{f}^{π} Mult. Comments x327 E_{γ} : from recoil- γ coin. (from figure 6 of 1991En01) in $^{12}C(^{54}Fe,2p\gamma) E=165 MeV.$ 0.50[#] 5 340.8 4 3078.1 4^{+} 2737.1 4+ Iγ=0.50 1 (1994Cr05). D& 4.21[#] 42 4237.9 6+ DCO=0.64 2 397.8 2 4636.1 7^{-} Iγ=4.21 *1* (1994Cr05). E_{γ} : from figure 3 of 1994Cr05. E_{γ} =429.4 in table 2. 429.9 4 1.4 2 2737.1 4^{+} $2307.1 4^{+}$ $I_{\gamma} = 1.4 \ l \ (1994 Cr 05).$ D& 512.2 2 4.5 7 4670.8 6-4158.5 5-DCO=0.36 2 Iγ=4.5 5 (1994Cr05). 516.8 1 0.8 1 5153.4 7^{-} 4636.1 7-Iγ=0.8 1 (1994Cr05). 547.8 1 0.08 2 5701.2 (8^{-}) 5153.4 7-Iγ=0.08 2 (1994Cr05). 2.47[#] 25 D& 592.4 1 4670.8 6-4078.6 5+ DCO=0.63 2 Iγ=2.47 2 (1994Cr05). D& 641.4 1 18.4 19 4636.1 7-3994.4 6+ DCO=0.66 2; A2=-0.163 5 E_{γ} : rounded off value. $E_{\gamma}=641.36 \ 4$ quoted (1994Cr05) in table 2 and 641.3 in figure 3. Iγ=18.4 *1* (1994Cr05). D& 4.39[#] 44 744.1 1 4670.8 6-3926.6 5-DCO=0.75 3 Iγ=4.39 2 (1994Cr05). 4.46[#] 45 770.8 1 3078.1 4^{+} 2307.1 4+ Iγ=4.46 2 (1994Cr05). 18.1[#] 18 807.7 1 1799.3 2^{+} 991.6 2+ E_{γ} : rounded off value. $E_{\gamma}=807.67 \ l$ quoted (1994Cr05) in table 2 and 808.0 in figure 3. Iγ=18.10 3 (1994Cr05). 824.7 1 8.2 12 4983.1 7^{-} 4158.5 5-Iγ=8.2 8 (1994Cr05). 0.28[#] 3 838.3 3 6965.5 6127.5 (9⁻) Iγ=0.28 2 (1994Cr05). (8)1.98[#] 20 2999.2 3-927.6 1 3926.6 5-Iγ=1.98 2 (1994Cr05). 16.9[#] 17 937.3 3 2737.1 4^{+} 1799.3 2+ E_γ: 937.6 in figure 3 (1994Cr05). $I\gamma = 16.9 4 (1994 Cr05).$ Q[@] 2.39[#] 24 954.8 1 5625.6 8-4670.8 6-DCO=0.92 3 Iγ=2.39 2 (1994Cr05). Q[@] 991.6 991.8 *1* 100 2^{+} $0.0 \quad 0^+$ DCO=0.90 1: A₂=+0.124 2 997.6 0.8 1 7121.9 (10^{+}) 6124.9 (8⁺) Iγ=0.8 1 (1994Cr05). E_{γ} , I_{γ} : doublet. Energy from level energy difference and intensity from $\gamma\gamma$ coin. 5^{+} 1000.7.5 1.60 16 4078.6 3078.1 4+ Iγ=1.60 4 (1994Cr05). 1.19[#] 12 1030.4 1 5701.2 (8^{-}) 4670.8 6-Iγ=1.19 2 (1994Cr05). 4.3[#] 4 1047.2^{*a*} 5 5683.3 9-4636.1 7-Iγ=4.3 1 (1994Cr05).

$\gamma(^{64}\text{Zn})$

Continued on next page (footnotes at end of table)

¹²C(⁵⁴Fe,2pγ) **1994Cr05** (continued)

$\gamma(^{64}$ Zn) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	\mathbf{E}_{f}	\mathbf{J}_{f}^{π}	Mult.	Comments
1056.6 7	8.1 10	4983.1	7-	3926.6	5-	Q [@]	DCO=0.91 1
1064.5 5	1.2 2	5701.2	(8 ⁻)	4636.1	7-		$1\gamma = 8.1.5$ (1994Cr05). DCO=0.9.2
1079.4 6	0.66 7	4158.5	5-	3078.1	4+		$I\gamma = 1.2 I (1994 Cr05).$ $I\gamma = 0.66 2 (1994 Cr05).$
1088.4 2	3.2 [#] 3	7121.9	(10 ⁺)	6033.7	(8 ⁺)	Q [@]	DCO= $0.96\ 7$; A ₂ =+ $0.45\ 2$ Iy= $3.2\ 1\ (1994Cr05)$.
1144.6 <i>1</i>	4.0 5	6127.5	(9 ⁻)	4983.1	7-	Q [@]	DCO=0.91 I $I_{Y}=4.0.3 (1994Cr05).$
1183.0 <i>3</i>	0.93 9	7121.9	(10 ⁺)	5938.5	(8 ⁺)	Q [@]	DCO=0.92.6 $D_{C}=0.93.4$ (1994Cr05)
1189.4 <i>3</i>	0.09 1	8997.9	(12+)	7808.5	(10 ⁺)	Q [@]	DCO=0.9 l $I_{2}=0.9 l$ (1004Cr05)
1210.7 3	0.35 5	7335.6	(10+)	6124.9	(8+)	Q [@]	DCO=1.2 2
1227.3 2	1.4 2	5153.4	7-	3926.6	5-	Q [@]	DCO=0.92 2
1263.4 5	0.10 2	6965.5	(8)	5701.2	(8 ⁻)	D&	$P_{\gamma}=1.4.2$ (1994Cros). DCO=0.52.6
1315.3 <i>1</i>	77 [#] 7	2307.1	4+	991.6	2+	Q [@]	$P_{\gamma}=0.10\ 2\ (1994C105).$ DCO=0.88 <i>1</i> ; A ₂ =+0.235 <i>3</i>
1341 5 1	4 9 [#] 5	4078 6	5+	2737 1	4+		$1\gamma = 70.72$ (1994Cr05). $1\gamma = 4.89.5$ (1994Cr05)
1454.3 2	0.6 1	7581.9	(11 ⁻)	6127.5	(9 ⁻)	Q [@]	DCO= $0.98 \ 3$ $I_{\gamma} = 0.6 \ 1 \ (1994Cr05)$
1463.7 3	0.57 6	8585.7	(12 ⁺)	7121.9	(10 ⁺)	Q [@]	DCO= $0.86~6$ $I_{2}=0.57~2~(1994Cr05)$
1500.6 1	10.0 [#] 10	4237.9	6+	2737.1	4+		$I_{\gamma}=0.572$ (1994Cr05). $I_{\gamma}=9.954$ (1994Cr05).
1581.7 ^{<i>a</i>} 4	1.45 [#] 15	7265.0		5683.3	9-		$I_{\gamma} = 1.45 \ 3 \ (1994 Cr05).$
1619.8 <i>1</i>	15.3 [#] 15	3926.6	5-	2307.1	4+	D ^{&}	DCO=0.67 1
1627.2.6	182	6263 3		4636 1	7-		$I\gamma = 15.25 \ 5 \ (1994Cr05).$ $I\gamma = 1.8 \ I \ (1994Cr05)$
1686.8 <i>1</i>	34.3 [#] <i>34</i>	3994.4	6+	2307.1	4 ⁺	Q [@]	DCO=0.89 <i>I</i> ; A_2 =+0.250 <i>5</i> I_2 =34 3 2 (1994Cr05)
							E_{γ} : 1686.7 in figure 3.
1746.4 5	0.92 10	2737.1	4+	991.6	2+		$I\gamma = 0.92 5 (1994Cr05).$
1771.5 2	1.4 2	4078.6	5+	2307.1	4+		$I\gamma = 1.4 \ 2 \ (1994Cr05).$
17/6.9	122	7904.5	(0^+)	6127.5	(9) 6 ⁺		E_{γ} : from figure 3 of 1994Cr05.
1790.2.3	1.2 2 5 0 [#] <	1700.2	(ð) 2 ⁺	4257.9	0		$1\gamma = 1.2 T (1994C103).$
1/99.1 <i>I</i> 1851 6 3	5.9" 0 2.0.3	1/99.3	2 · 5-	2307.1	0 · 4+		$I_{2} = 20.2(1004Cr05)$
1860.0.7	2.0 5	7000 5	(10^{\pm})	5020 5	+ (0+)	00	$DCO_{-1} = 2$
1809.9 /	0.35 4	7808.5	(10^{10})	3938.3	(8')	Q-	$I\gamma = 0.35 \ 2 \ (1994 Cr 05).$
1887.0 4	0.5 1	6124.9	(8 ⁺)	4237.9	6+	Q [@]	DCO=2.1 6 $I\gamma$ =0.5 1 (1994Cr05).
1915 2	0.09 2	7948.7	(10+)	6033.7	(8+)	Q [@]	DCO=1.3 <i>3</i> Ιγ=0.09 2 (1994Cr05).
1943.7 <i>3</i>	3.7# 4	5938.5	(8+)	3994.4	6+	(Q)	A ₂ =+0.21 2 Iγ=3.7 1 (1994Cr05). A ₂ consistent with Δ J=2, quadrupole.
2007.9 3	3.50 [#] 35	2999.2	3-	991.6	2+	D&	DCO=0.63 3; A_2 =-0.24 2 I γ =3.50 3 (1994Cr05).

Continued on next page (footnotes at end of table)

¹²C(⁵⁴Fe,2pγ) **1994Cr05** (continued)

$\gamma(^{64}$ Zn) (continued)

E_{γ}^{\dagger}	I_{γ}^{\ddagger}	E _i (level)	\mathbf{J}_i^{π}	$\mathbf{E}_f \mathbf{J}_f^{\pi}$	Mult.	Comments
2038.9 5	1.8 [#] 2	6033.7	(8 ⁺)	3994.4 6+	Q [@]	DCO=0.88 6; A_2 =+0.30 4 I γ =1.8 <i>I</i> (1994Cr05). E.: 2038 1 in figure 3 (1994Cr05)
2087.8 7	3.49 [#] 35	3078.1	4+	991.6 2+	Q [@]	DCO= $0.89 \ 3$ Iy= $3.49 \ 3 \ (1994Cr05)$.
2130.6 6	2.6 [#] 3	6124.9	(8+)	3994.4 6+	Q [@]	D_{γ} , poor int. Level energy uniference=2000.5. DCO=0.91 6; A ₂ =+0.19 3 I_{γ} =2 6 1 (1994Cr05)
2221 2	0.14 3	8159.6	(10+)	5938.5 (8+)	(Q) [@]	DCO= $0.8 \ 2$ I γ = $0.14 \ 3 \ (1994Cr05).$

[†] Comparison of energies with those known from other studies shows that uncertainty of 0.1 or less for prominent γ rays as quoted by 1994Cr05 is underestimated. For the purpose of least-squares fit, the the evaluators assigned a minimum uncertainty of 0.2 keV.

^{\ddagger} Systematic uncertainty of $\approx 10\%$ is not included in the quoted values by 1994Cr05. Evaluators have added this uncertainty in quadrature.

[#] From recoil- γ coin data.

[@] DCO ratio indicates $\Delta J=2$, quadrupole transition. 1994Cr05 assign E2.

& DCO ratio indicates $\Delta J=1$, dipole or D+Q transition. 1994Cr05 assign E1 or M1+E2.

^a Different placement in the Adopted dataset.

 $x \gamma$ ray not placed in level scheme.

64 30Zn₃₄

6

¹²C(⁵⁴Fe,2pγ) 1994Cr05

⁶⁴₃₀Zn₃₄