	His	tory	
Туре	Author	Citation	Literature Cutoff Date
Full Evaluation	Balraj Singh and Jun Chen	NDS 178,41 (2021).	12-Nov-2021

 $J^{\pi}(^{63}\text{Ni g.s.})=1/2^{-}$.

2018MuZY: Compilation of thermal neutron induced σ and resonance parameter data for nuclei of Z=1-60.

2013Le01: neutrons were produced through spallation reactions of 20 GeV/*c* protons from the Proton Synchrotron at CERN with a massive Pb target. Target was ⁶³Ni produced by irradiating highly enriched ⁶²Ni in a thermal reactor. Prompt capture γ rays detected by two optimized C₆D₆ liquid scintillation detectors. Measured $\sigma(E_n)$. Deduced resonances.

2015We14: neutrons from the Manuel Lujan, Jr., Neutron Scattering Center at the Los Alamos Neutron Science Center (LANSCE). Measured $\sigma(E_n)$. Deduced resonances.

All data are from 2018MuZY, unless otherwise noted. Note that compiled data in 2018MuZY are taken from 2013Le01 and data from 2015We14 is consulted but not used by 2018MuZY.

⁶⁴Ni Levels

E(n)(lab) under comments are from 2018MuZY, unless otherwise noted.

The neutron energy interval between 2 and 8 keV is dominated by the strong resonance in ${}^{62}Ni(n,\gamma)$ at 4.6 keV; therefore, smaller resonances in ${}^{63}Ni(n,\gamma)$ might be invisible due to this background (2013Le01).

Capture kernel $A_{\gamma} = g_s \Gamma_n \Gamma_{\gamma} / (\Gamma_n + \Gamma_{\gamma})$, where g_s is the spin statistical factor, Γ_n is the neutron width, and Γ_{γ} is the radiative width. Values are from 2013Le01.

E(level) [†]	\mathbf{J}^{π}	L	Comments
9657.862 1			$A_{\gamma}(meV)=5.7 \ 4.$ E(n)(Lab)=0.398 keV 1. E(n)(Lab)=0.39796 keV 4 (2013Le01).
9658.0480 10	0-,1-‡	0‡	$A_{\gamma}(meV)=340\ 20.$ E(n)(Lab)=0.5873 keV 10. Other: 0.5884 keV 12 (2015We14). E(n)(Lab)=0.58725 keV 9 (2013Le01).
9658.814 <i>1</i>	0-,1-‡	0‡	$A_{\gamma}(meV)=810 \ 40.$ E(n)(Lab)=1.366 keV 2. Other: 1.3631 keV 31 (2015We14). E(n)(Lab)=1.366 keV 1 (2013Le01).
9664.17 20			E(n)(Lab)=6.806 keV 32 from 2015We14.
9665.968 4			$A_{\gamma}(meV) = 45 9.$
			E(n)(Lab) = 8.634 keV 4.
			E(n)(Lab)=8.634 keV 2 (2013Le01).
9666.309 6			$A_{\gamma}(\text{meV})=50 \ 10.$
			E(n)(Lab) = 8.981 keV 6.
			E(n)(Lab)=8.981 keV 3 (2013Le01).
9666.36 20			E(n)(Lab)=9.037 keV 13 from 2015We14.
9666.480 8			$A_{\gamma}(meV)=43.9$.
			S: 430 9 from 2018MuZY is a misprint.
			E(n)(Lab) = 9.154 keV 8.
0667 002 6			E(n)(Lab) = 9.154 KeV 4 (2013Le01).
9007.092 0			$A_{y}(\text{life} v) = 100 \ 10$. E(n)(1 a)(-0.76 keV 6. Other: 0.787 keV 18 (2015Wa14))
			E(n)(1a) - 9.776 keV 3.(2013) keV 10.(2013) we14.
9669 36 20			E(n)(1ab)=12.085 keV 60 from 2015We14
9670.03.20			E(n)(Lab)=12.057 keV 42 from 2015 We14
9671.233.3			$A_{\rm e}({\rm meV}) = 131/45$
			E(n)(Lab)=13.984 keV 6.
			E(n)(Lab)=13.984 keV 3 (2013Le01).
9671.33 21			E(n)(Lab)=14.078 keV 14 from 2015We14.
9673.41 20			E(n)(Lab)=16.194 keV 28 from 2015We14.
9674.327 8			$A_{\gamma}(meV) = 108\ 59.$

Continued on next page (footnotes at end of table)

1

⁶³Ni(n,γ):resonances 2018MuZY (continued)

⁶⁴Ni Levels (continued)

E(level) [†]	Comments
	E(n)(Lab)=17.127 keV 8.
	E(n)(Lab)=17.127 keV 4 (2013Le01).
9675.02 21	E(n)(Lab)=17.830 keV 54 from 2015We14.
9676.722 12	$A_{\gamma}(meV) = 130\ 20.$
	E(n)(Lab) = 19.561 keV 12.
	E(n)(Lab)=19.561 keV 6 (2013Le01).
9676.83 21	E(n)(Lab)=19.667 keV 47 from 2015We14.
9680.24 22	E(n)(Lab)=23.159 keV 96 from 2015We14.
9686.86 22	E(n)(Lab)=29.860 keV 102 from 2015We14.
9689.290 20	$A_{\gamma}(meV) = 5.0E2 \ 20.$
	E(n)(Lab)=32.330 keV 20.
	E(n)(Lab)=32.330 keV 10 (2013Le01).
9711.36 6	$A_{\gamma}(meV) = 7.0E2 \ 20.$
	E(n)(Lab) = 54.75 keV 6.
	E(n)(Lab)=54.750 keV 30 (2013Le01).
9711.36 <i>6</i>	$A_{\gamma}(\text{meV})=7.0E2\ 20.$ E(n)(Lab)=54.75 keV 6. E(n)(Lab)=54.750 keV 30 (2013Le01).

^{\uparrow} E(level)=E(n)(c.m.)+S(n)(⁶⁴Ni), where S(n)(⁶⁴Ni)=9657.46 20 (2021Wa16) and E(n)(c.m.)=E(n)(lab)×mass(⁶³Ni)/[m(n)+mass⁶³Ni)]. Relative uncertainties are given here with respect to those in neutron energies. For absolute uncertainty in excitation energy add 0.20 keV in quadrature; this uncertainty dominates for all the levels listed here.

^{\ddagger} Orbital angular momentum *l*=0 could be deduced from resonance shape.