⁶⁴Cu ε decay (12.7006 h) 2012Be24,2012Lu14,2010Wa46

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh and Jun Chen	NDS 178,41 (2021).	12-Nov-2021				

Parent: ⁶⁴Cu: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=12.7006$ h 20; $Q(\varepsilon)=1674.62$ 21; $\%\varepsilon+\%\beta^+$ decay=61.52 30

 64 Cu-J^{π},T_{1/2}: From 64 Cu Adopted Levels.

- ⁶⁴Cu-%ε+%β⁺ decay: %ε+%β⁺=61.52 30 from 100-%β⁻ with %β⁻=38.48 30 from weighted average of 38.4 12 (2007Qa02), 38.06 30 (2002We02), 38.34 56 (1986Ka03) and 39.04 33 (1983Ch47). Measured %β⁺=17.68 11, weighted average of 17.69 19, 17.55 15 and 17.65 60 in 2012Be24, 17.56 11 (2010Wa46), 17.8 4 (2007Qa02), 17.93 20 (1986Ka03), and 17.86 14 (1983Ch47). Measured %ε=43.40 56, weighted average of 43.8 14 (2007Qa02), 43.73 52 (1986Ka03) and 43.10 46 (1983Ch47).
- 2012Be24: EURAMET 1085 measurements for spectroscopic properties of ⁶⁴Cu decay made at five different laboratories: LNE-LNHB (France), PTB (Germany), CMI (Czech Republic), NPL (UK), and IFIN-HH (Romania). Results were evaluated for emission probabilities and half-life of ⁶⁴Cu decay as follows: %β⁻=38.48 26; %β⁺=17.52 15; %ε(to ⁶⁴Ni g.s.)=43.53 20; I(ε)/[I(β⁺)+I(β⁻)]=0.786 10; photon emission probability of 1345.7-keV γ ray=0.4748% 34; and T_{1/2}=12.7004 h 20. See also DDEP evaluation 2011BeZW by M.M. Be and R.G. Helmer.
- 2018Be13: measured absolute activity at NIST by $4\pi\beta\gamma$ live-timed anticoincidence method using liquid scintillator for β and NaI(Tl) detector for γ activity. Comparison with standards from other laboratories, based on which authors concluded that improved data are needed for determination of consistent $I(\beta^+)/I(\beta^-)$ branching ratios.
- 2018Ya06: measured photon emission probability of 1345.7-keV γ ray at the IPEN metrology lab in Sao Paulo as 0.472% 10 by $4\pi\beta\gamma$ -coin method using proportional counter for β detection.
- 2017Pi09: measured photon emission probability of 1345.7-keV γ ray as 0.4721% 26, and half-life of ⁶⁴Cu decay at NIST using four different methods for half-life.
- 2012Am05: measured photon emission probability of 1345.7-keV γ ray, intensity of K α and K β -x rays, and half-life of ⁶⁴Cu decay at CEA, LIST, Saclay as a part of EURAMET 1085 project. Following values were determined: 0.472% *12* for emission probability of 1345.7-keV γ , I(511 radiation)=35.1% *3*, I(K α x rays)=14.41% *15*, I(K β x rays)=2.01% *3*.
- 2012Lu14: measurement of emission probabilities of 1345.7-keV γ ray and 511-keV radiation, together with half-life of ⁶⁴Cu decay at IFIN-HH, Bucharest as part of EURAMET project 1085. Values obtained were: 0.481% *17* for photon emission probability of 1345.7-keV γ ray, 35.3% *12* for 511-keV radiation, and T_{1/2}=12.696 h *12*.
- 2010Wa46: measurement of emission probabilities of 1345.7-keV γ ray and 511-keV radiation, together with half-life of ⁶⁴Cu decay at PTB, Germany as part of EURAMET project 1085. Values obtained were: 0.474% 5 for photon emission probability of 1345.7-keV γ ray, 35.12% 22 for 511-keV radiation, and T_{1/2}=12.704 h 5.
- 2011InZZ: measured KLL-Auger spectrum.
- 2008Fa12: measured temperature dependence of half-life.
- 2007Qa02: measurement of emission probabilities of 1345.7-keV γ ray, I(β⁻), I(β⁺), and I(ε) at Julich, Germany. Values obtained were: 0.54% 3 for photon emission probability of 1345.7-keV γ ray, 38.4% 12 for I(β⁻), 17.8% 4 for I(β⁺), 43.8% 14 for I(ε).
 2006Fe11: measured near-zero-energy electron yields as a function of source thickness.
- 1986Ka03, 1983Ch47: Measured β^+ , β^- , γ , $4\pi\beta\gamma$, T_{1/2}.
- 2002We02: measured $\%\beta^-$ from analysis of ⁶⁴Zn and ⁶⁴Ni atoms.
- 2005QaZY: positron branching measured, but no results available.
- $T_{1/2}$ ⁽⁶⁴Cu decay): see ⁶⁴Cu Adopted Levels, Gammas dataset for detailed comments about half-life measurements.
- β^{-} : 1984Co12+1983Sc31 (search for massive neutrinos), 1959Sc27, 1959Sc71, 1949Bo16, 1949Ow06, 1949La24, 1948Co02,
- 1946Br03, 1941To01, 1939Ty01. Theory: 1972Ma72.
- β longitudinal polarization: 1957Vi21, 1957Ha17.
- K-shell ionization (calculation): 1988Ba78.
- *γ*: 1984Ke14, 1982RuZV, 1974HeYW, 1974Ar22, 1972Cr02, 1970Di01, 1969GuZV, 1968Ke12, 1959Sc71, 1953Dz30, 1952Vl03, 1952Br31, 1951Me58, 1950Ku51, 1950Bo34, 1949Hu21, 1948Ku10, 1948Me26, 1948Co14, 1947De07.
- β⁻, β⁺: 1984Co12+1983Sc31 (search for massive neutrinos), 1959Sc27, 1951P117, 1949Bo16, 1949Ow06, 1949La24, 1948Co02, 1947Pe10, 1946Br03, 1941To01, 1939Ty01. Theory: 1972Ma72.

Fluorescence yields (K-shell vacancies etc.) (using γ^{\pm} K x ray coin and $\gamma^{\pm} \beta$ K x ray coin techniques): 1980Sc20, 1980Sc03, 1979Do10.

- Additional information 1.
- Polarization of positrons through γ^{\pm} (θ): 1966Fu16, 1957Ha17.

⁶⁴Cu-Q(ε): From 2021Wa16.

⁶⁴Cu ε decay (12.7006 h) 2012Be24,2012Lu14,2010Wa46 (continued)

Others: 1960La13, 1957Ku57, 1956Dz26, 1951Hi88, 1950Re51.

⁶⁴Ni Levels

E(level)	$J^{\pi \dagger}$	$T_{1/2}^{\dagger}$	
0.0	0^{+}		
1345.79 6	2+	1.086 ps 35	

[†] From the Adopted Levels.

ε, β^+ radiations

E(decay)	E(level)	$\mathrm{I}\beta^+$ [†]	$\mathrm{I}\varepsilon^{\dagger}$	Log ft	$\mathrm{I}(\varepsilon + \beta^+)^{\dagger}$	Comments
(328.83 22)	1345.79		0.472 4	5.504 4	0.472 4	ε K=0.8835; ε L=0.09963; ε M+=0.01691 I(ε + β^+); from %I(1345.8 γ).
(1674.62 21)	0.0	17.49 <i>15</i>	43.56 25	4.969 2	61.05 <i>30</i>	av $E\beta$ =278.008 90; εK =0.6330 2; εL =0.06883 3; εM +=0.011629 4 E(decay): 1673.4 10 from measured E(β^+)=651.4 10 (1983Ch47). Others: 1959Sc71, 1951Hi88, 1949Ow06, 1948Co02, 1947Pe10, 1946Br03, 1941To01, 1939Ty01. I($\varepsilon + \beta^+$): from adopted $\%\varepsilon + \%\beta^+$ (g.s.+1346)=61.52 30 and $\%\varepsilon + \%\beta^+$ (1346 level)=0.472 4.

[†] Absolute intensity per 100 decays.

$\gamma(^{64}\text{Ni})$

%I(K α X ray)=14.41 15, %I(K β X ray)=2.01 3 (2012Am05,2012Be24).

Eγ	I_{γ}^{\dagger}	E_i (level)	\mathbf{J}_i^{π}	$E_f J_f^{\pi}$	Mult.	α^{\ddagger}	Comments
1345.77 6	0.472 4	1345.79	2+	0.0 0+	E2	1.63×10 ⁻⁴	 α(K)=0.0001113 16; α(L)=1.085×10⁻⁵ 16; α(M)=1.528×10⁻⁶ 22 α(N)=6.59×10⁻⁸ 10; α(IPF)=3.94×10⁻⁵ 6 E_γ: from 1974HeYW; Δ(Eγ)=0.16 keV quoted in 2004BeZR (see evaluation of ⁶⁴Cu decay) seems a misprint. I_γ: weighted average of 0.472 10 (2018Ya06), 0.469 4 (2017Pi09), 0.476 6, 0.472 12 and 0.481 17 in 2012Be24, 0.474 5 (2010Wa46), 0.471 11 (1983Ch47), and 0.487 20 (1986Ka03). Other: 0.54 3 from 2007Qa02 is discrepant. Mult.: from the Adopted dataset.

[†] Absolute intensity per 100 decays.

[‡] Total theoretical internal conversion coefficients, calculated using the BrIcc code (2008Ki07) with Frozen orbital approximation based on γ -ray energies, assigned multipolarities, and mixing ratios, unless otherwise specified.

⁶⁴Cu ε decay (12.7006 h) 2012Be24,2012Lu14,2010Wa46

Decay Scheme

Intensities: $I_{(\gamma+ce)}$ per 100 parent decays

