64 Co β^- decay (0.30 s) 2012Pa39,1974Ra31

History							
Туре	Author	Citation	Literature Cutoff Date				
Full Evaluation	Balraj Singh and Jun Chen	NDS 178,41 (2021).	12-Nov-2021				

Parent: ⁶⁴Co: E=0.0; $J^{\pi}=1^+$; $T_{1/2}=0.30$ s 3; $Q(\beta^-)=7307\ 20$; $\%\beta^-$ decay=100

 64 Co-J^{π},T_{1/2}: From Adopted Levels of 64 Co.

⁶⁴Co-Q(β^{-}): From 2021Wa16.

2012Pa39: The ⁶⁴Co decay data were taken as part of β -decay of Mn isotopes at the CERN-ISOLDE. Pure and intense ^{58,60-68}Mn ions were produced in an induced fission reaction of a 1.4 GeV proton beam impinging on a thick UC_x target of 45 g/cm² thick, ionized by the RILIS laser system, separated by the High Resolution Separator (HRS) and finally implanted into a movable tape surrounded by three thin plastic $\Delta E \beta$ detectors and two MINIBALL γ -detector clusters. Measured $E\gamma$, $I\gamma$, $\gamma\gamma$ -coin, E β . Deduced levels, J^{π} , β -decay branching ratios, log*t*, configurations.

1974Ra31: ⁶⁴Co ions were produced from ⁶⁴Ni(n,p) with 14 MeV neutrons from the AERE. Target was 30 mg metallic 96.44% enriched ⁶⁴Ni. γ rays were detected with a Ge(Li) and a NaI(Tl) detector; β particles were detected with a plastic scintillator. Measured E γ , I γ , E β , I β , $\beta\gamma$ -coin, $\beta\gamma$ (t). Deduced parent T_{1/2}, β -decay branching ratios.

Other: 2012Br15, 1969Wa15. Measured $T_{1/2}$, β^- , γ .

Activities of 28 s (1966St11), 2.0 min and 7.8 min (1960Pr05, 1962Va23), ≈4 min (1949Pa01) assigned to ⁶⁴Co decay later reassigned to other nuclides (1969Wa15,1966Le19).

 β -strengths (theoretical): 1995Ko26, 1991Ka25.

The decay scheme is incomplete due to a large (\approx 3 MeV) gap between the highest observed level at 4556 keV and Q(β^-)value of 7307 keV.

	⁶⁴ Ni	Level	s
--	------------------	-------	---

E(level) [†]	$J^{\pi \ddagger}$	T _{1/2} ‡	E(level) [†]	J ^{#‡}	T _{1/2} ‡
0.0	0^{+}		3153.73 7	2+	
1345.77 6	2+	1.086 ps 35	3275.99 8	2+	0.24 ps 3
2276.58 7	2+		3578.55 8	(1^{+})	
2867.39 12	0^{+}	1.4 ps 6	3856.54 22	0^{+}	
2972.09 8	$(1,2^+)$	0.13 ps +13-5	4268.12 9	0^{+}	
3025.89 12	0^{+}	3.6 ps 12	4556.4 4	$(0^+, 1^+, 2^+)$	

[†] From a least-squares fit to γ -ray energies. Uncertainty of 688.0 γ was doubled to 0.6 keV in the fitting procedure.

[‡] From the Adopted Levels.

β^{-} radiations

E(decay)	E(level)	Ιβ ^{-†#}	$\log ft^{\ddagger}$	Comments
(2751 20)	4556.4	≈0.09	≈5.4	av E β =1166.8 96
(3039 20)	4268.12	≈0.23	≈5.2	av E β =1304.4 96
(3451 20)	3856.54	≈0.48	≈5.1	av $E\beta = 1501.9 \ 97$
(3728 [@] 20)	3578.55	< 0.03	>6.4	av E β =1635.9 97
(4031 20)	3275.99	≈0.19	≈5.8	av E β =1782.1 97
(4153 [@] 20)	3153.73	< 0.03	>6.6	av E β =1841.3 97
(4281 20)	3025.89	≈0.23	≈5.8	av $E\beta = 1903.2 \ 97$
(4335 20)	2972.09	≈0.18	≈5.9	av $E\beta = 1929.3 \ 97$
(4440 20)	2867.39	≈0.57	≈5.5	av $E\beta = 1980.1 \ 97$
(5030 20)	2276.58	≈2.9	≈5.0	av E β =2267.1 98
				E(decay): measured: 4.8×10^3 6 (1974Ra31).
(5961 20)	1345.77	≈3.2	≈5.3	av E β =2720.4 98
				E(decay): measured: $5.6 \times 10^3 5$ (1974Ra31).
(7307 20)	0.0	92.0 9	4.26 5	av $E\beta = 3376.8 \ 98$
				E(decay): measured: $7.0 \times 10^3 4$ (1974Ra31), $7.0 \times 10^3 5$ (1969Wa15).

Continued on next page (footnotes at end of table)

⁶⁴Co β⁻ decay (0.30 s) 2012Pa39,1974Ra31 (continued)

β^- radiations (continued)

E(decay) E(level)

Comments

Iβ⁻: deduced in 2012Pa39 by comparing the number of ⁶⁴Co decays to the ⁶⁴Co β-delayed γ-ray intensity. Other: 90 +5-10 (1974Ra31).

[†] Deduced by evaluators from γ -ray intensity balances assuming g.s. β^- feeding I $\beta^-=92.0.9$ measured by 2012Pa39. The values could be overestimated due to incomplete decay scheme and should be considered as approximate, except for I β^- (g.s.).

[‡] Values are approximate due to incomplete decay scheme.

[#] Absolute intensity per 100 decays.

[@] Existence of this branch is questionable.

$\gamma(^{64}\text{Ni})$

I γ normalization: From $\Sigma(I(\gamma+ce)$ to g.s.)=100-I β^{-} (g.s.), with the g.s. β^{-} feeding I β^{-} (g.s.)=92.0 9 measured in 2012Pa39. Due to the incomplete decay scheme, the normalization is considered as approximate.

E_{γ}^{\dagger}	$I_{\gamma}^{\dagger \#}$	E_i (level)	\mathbf{J}_i^{π}	E_f	\mathbf{J}_{f}^{π}	Mult. [‡]	δ	Comments
278.6 3	0.6 3	3856.54	0+	3578.55	(1^{+})			
688.0 <i>3</i>	0.5 2	4268.12	0^{+}	3578.55	(1^{+})			
695.7 <i>3</i>	0.8 <i>3</i>	2972.09	$(1,2^{+})$	2276.58	2^{+}			
702.2 3	5.8 <i>3</i>	3856.54	0^{+}	3153.73	2+			
877.2 1	1.9 <i>3</i>	3153.73	2+	2276.58	2^{+}			
930.8 1	40.7 9	2276.58	2+	1345.77	2+	(M1+E2)	≈-0.9	E_{γ} : weighted average of 930.8 <i>I</i> (2012Pa39) and 931.1 <i>3</i> (1974Ra31).
1114.6 <i>1</i>	2.3 4	4268.12	0^{+}	3153.73	2^{+}			
1345.8 <i>1</i>	100	1345.77	2+	0.0	0^{+}	E2		E_{γ} : weighted average of 1345.8 <i>l</i> (2012Pa39) and 1346.1 <i>3</i> (1974Ra31).
1521.6 <i>1</i>	7.6 6	2867.39	0^{+}	1345.77	2^{+}	E2		
1626.3 <i>1</i>	1.0 4	2972.09	$(1,2^{+})$	1345.77	2+			
1680.1 <i>1</i>	3.1 4	3025.89	0^{+}	1345.77	2^{+}	E2		
1808.0 1	2.4 4	3153.73	2+	1345.77	2+			
1930.2 <i>1</i>	0.3 2	3275.99	2+	1345.77	2+	(M1+E2)		
2232.9 1	0.7 5	3578.55	(1^{+})	1345.77	2+			
2276.6 1	<1	2276.58	2+	0.0	0^{+}			
2922.1 <i>1</i>	< 0.5	4268.12	0^{+}	1345.77	2+			
2972.0 1	0.6 2	2972.09	$(1,2^{+})$	0.0	0^{+}			
3153.7 <i>1</i>	3.3 6	3153.73	2+	0.0	0^{+}			
3210.5 4	1.2 4	4556.4	$(0^+, 1^+, 2^+)$	1345.77	2+			
3275.9 1	2.2 5	3275.99	2+	0.0	0^{+}			
3578.3 1	< 0.3	3578.55	(1^{+})	0.0	0^{+}			

[†] From 2012Pa39, unless otherwise noted.

[‡] From the Adopted dataset.

[#] For absolute intensity per 100 decays, multiply by 0.075.

64 Co β^- decay (0.30 s) 2012Pa39,1974Ra31

