## $^{208}$ Pb( $^{64}$ Ni, $^{64}$ Ni' $\gamma$ ) **1994Pa20**

| History         |                           |                    |                        |  |  |  |  |
|-----------------|---------------------------|--------------------|------------------------|--|--|--|--|
| Туре            | Author                    | Citation           | Literature Cutoff Date |  |  |  |  |
| Full Evaluation | Balraj Singh and Jun Chen | NDS 178,41 (2021). | 12-Nov-2021            |  |  |  |  |

1994Pa20 (also 1994Pa32,1995Fo16): E=350 MeV beam from the VICKSI accelerator at HMI Berlin. Target was 30 mg/cm<sup>2</sup> 98.7% enriched <sup>208</sup>Pb.  $\gamma$  rays were detected with the OSIRIS array of 11 Compton-suppressed Ge detectors and 48 BGO inner ball detectors. Measured E $\gamma$ , I $\gamma$ ,  $\gamma\gamma$ -coin. Deduced levels, J,  $\pi$ . Shell-model calculations and role of g<sub>9/2</sub> neutron orbital studied for high spins.

| E(level) <sup>†</sup> | J <sup>π‡</sup> | E(level) <sup>†</sup> | J <sup>π</sup> ‡ | E(level) <sup>†</sup> | $J^{\pi \ddagger}$ | E(level) <sup>†</sup>     | $J^{\pi \ddagger}$                                |
|-----------------------|-----------------|-----------------------|------------------|-----------------------|--------------------|---------------------------|---------------------------------------------------|
| 0.0                   | $0^{+}$         | 2867.5 5              | $0^+$            | 3749.7 <i>4</i>       | 4 <sup>(-)</sup>   | 4532.0 <sup>&amp;</sup> 4 | 7-                                                |
| 1346.02 10            | $2^{+}$         | 3166.4 5              | 4+               | 3849.2 <sup>#</sup> 3 | 5-                 | 4962.3 8                  | (6 <sup>-</sup> ,7 <sup>-</sup> ,8 <sup>-</sup> ) |
| 2276.82 14            | $2^{+}$         | 3396.0 <i>3</i>       | 4+               | 4085.4 4              | 5(-)               | 5812.4 <sup>a</sup> 7     | 8+                                                |
| 2610.32 14            | 4+              | 3560.6 4              | 3-               | 4172.6 <sup>@</sup> 4 | 6(-)               |                           |                                                   |

<sup>†</sup> From a least-squares fit to  $\gamma$ -ray energies.

<sup>‡</sup> From the Adopted Levels.

<sup>#</sup> Possible dominant configuration= $\nu g_{9/2} \nu p_{1/2}$ .

<sup>@</sup> Possible configuration= $vg_{9/2}vp_{3/2} + vg_{9/2}v, f_{5/2}^{-1}$ .

& Possible configuration= $vg_{9/2}vp_{3/2} + vg_{9/2}v, f_{5/2}^{-1}$ . 1990Fi07 suggest  $vf_{5/2}vg_{9/2}$ .

<sup>*a*</sup> Possible configuration= $vg_{9/2}^2$ .

| $\gamma($ | 64 N | Ji) |
|-----------|------|-----|
| X         | 1.   | NI) |

| Eγ <sup>†</sup>       | Ιγ           | $E_i$ (level) | $\mathbf{J}_i^{\pi}$    | $E_f$   | $\mathbf{J}_f^{\pi}$ |
|-----------------------|--------------|---------------|-------------------------|---------|----------------------|
| 99.6 6                | 0.3 1        | 3849.2        | 5-                      | 3749.7  | 4(-)                 |
| 189.0 4               | 1.2 2        | 3749.7        | 4 <sup>(-)</sup>        | 3560.6  | 3-                   |
| 236.5 5               | 0.5 2        | 4085.4        | $5^{(-)}$               | 3849.2  | 5-                   |
| 323.4 2               | 6.6 5        | 4172.6        | $6^{(-)}$               | 3849.2  | 5-                   |
| 359.4 2               | 3.1 3        | 4532.0        | 7-                      | 4172.6  | 6(-)                 |
| 430.3 6               | 0.5 1        | 4962.3        | $(6^{-}, 7^{-}, 8^{-})$ | 4532.0  | $7^{-}$              |
| 452.9 6               | 0.8 1        | 3849.2        | 5-                      | 3396.0  | 4+                   |
| 583.4 6               | 0.4 1        | 3749.7        | 4(-)                    | 3166.4  | 4+                   |
| 785.7 <i>5</i>        | 1.3 2        | 3396.0        | 4+                      | 2610.32 | 4+                   |
| 930.8 1               | 29.5 15      | 2276.82       | 2+                      | 1346.02 | 2+                   |
| 1239.0 <i>3</i>       | 7.2 7        | 3849.2        | 5-                      | 2610.32 | 4+                   |
| 1264.3 <i>1</i>       | 65.0 20      | 2610.32       | 4+                      | 1346.02 | $2^{+}$              |
| 1280.4 <sup>‡</sup> 5 |              | 5812.4        | 8+                      | 4532.0  | 7-                   |
| 1284.0 6              | 0.3 1        | 3560.6        | 3-                      | 2276.82 | $2^{+}$              |
| 1346.0 <i>1</i>       | 100.0        | 1346.02       | 2+                      | 0.0     | $0^{+}$              |
| 1474.8 5              | 1.0 2        | 4085.4        | $5^{(-)}$               | 2610.32 | 4+                   |
| 1521.5 4              | 1.6 <i>3</i> | 2867.5        | $0^{+}$                 | 1346.02 | 2+                   |
| 1820.4 5              | 1.0 3        | 3166.4        | 4+                      | 1346.02 | $2^{+}$              |
| 2049.8 <i>4</i>       | 1.6 4        | 3396.0        | 4+                      | 1346.02 | $2^{+}$              |
| 2214.4 5              | 1.1 3        | 3560.6        | 3-                      | 1346.02 | $2^{+}$              |

<sup>†</sup> From 1994Pa20.

<sup>‡</sup> Uncertainty assigned by the evaluator according to those for other transitions.



 $^{64}_{28}{
m Ni}_{36}$